Spaces:
Sleeping
Sleeping
File size: 9,943 Bytes
e4bf056 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Main class for the implementation of the global alignment
# --------------------------------------------------------
import numpy as np
import torch
import torch.nn as nn
from dust3r.cloud_opt.base_opt import BasePCOptimizer
from dust3r.utils.geometry import xy_grid, geotrf
from dust3r.utils.device import to_cpu, to_numpy
class PointCloudOptimizer(BasePCOptimizer):
""" Optimize a global scene, given a list of pairwise observations.
Graph node: images
Graph edges: observations = (pred1, pred2)
"""
def __init__(self, *args, optimize_pp=False, focal_break=20, **kwargs):
super().__init__(*args, **kwargs)
self.has_im_poses = True # by definition of this class
self.focal_break = focal_break
# adding thing to optimize
self.im_depthmaps = nn.ParameterList(torch.randn(H, W)/10-3 for H, W in self.imshapes) # log(depth)
self.im_poses = nn.ParameterList(self.rand_pose(self.POSE_DIM) for _ in range(self.n_imgs)) # camera poses
self.im_focals = nn.ParameterList(torch.FloatTensor(
[self.focal_break*np.log(max(H, W))]) for H, W in self.imshapes) # camera intrinsics
self.im_pp = nn.ParameterList(torch.zeros((2,)) for _ in range(self.n_imgs)) # camera intrinsics
self.im_pp.requires_grad_(optimize_pp)
self.imshape = self.imshapes[0]
im_areas = [h*w for h, w in self.imshapes]
self.max_area = max(im_areas)
# adding thing to optimize
self.im_depthmaps = ParameterStack(self.im_depthmaps, is_param=True, fill=self.max_area)
self.im_poses = ParameterStack(self.im_poses, is_param=True)
self.im_focals = ParameterStack(self.im_focals, is_param=True)
self.im_pp = ParameterStack(self.im_pp, is_param=True)
self.register_buffer('_pp', torch.tensor([(w/2, h/2) for h, w in self.imshapes]))
self.register_buffer('_grid', ParameterStack(
[xy_grid(W, H, device=self.device) for H, W in self.imshapes], fill=self.max_area))
# pre-compute pixel weights
self.register_buffer('_weight_i', ParameterStack(
[self.conf_trf(self.conf_i[i_j]) for i_j in self.str_edges], fill=self.max_area))
self.register_buffer('_weight_j', ParameterStack(
[self.conf_trf(self.conf_j[i_j]) for i_j in self.str_edges], fill=self.max_area))
# precompute aa
self.register_buffer('_stacked_pred_i', ParameterStack(self.pred_i, self.str_edges, fill=self.max_area))
self.register_buffer('_stacked_pred_j', ParameterStack(self.pred_j, self.str_edges, fill=self.max_area))
self.register_buffer('_ei', torch.tensor([i for i, j in self.edges]))
self.register_buffer('_ej', torch.tensor([j for i, j in self.edges]))
self.total_area_i = sum([im_areas[i] for i, j in self.edges])
self.total_area_j = sum([im_areas[j] for i, j in self.edges])
def _check_all_imgs_are_selected(self, msk):
assert np.all(self._get_msk_indices(msk) == np.arange(self.n_imgs)), 'incomplete mask!'
def preset_pose(self, known_poses, pose_msk=None): # cam-to-world
self._check_all_imgs_are_selected(pose_msk)
if isinstance(known_poses, torch.Tensor) and known_poses.ndim == 2:
known_poses = [known_poses]
for idx, pose in zip(self._get_msk_indices(pose_msk), known_poses):
if self.verbose:
print(f' (setting pose #{idx} = {pose[:3,3]})')
self._no_grad(self._set_pose(self.im_poses, idx, torch.tensor(pose)))
# normalize scale if there's less than 1 known pose
n_known_poses = sum((p.requires_grad is False) for p in self.im_poses)
self.norm_pw_scale = (n_known_poses <= 1)
self.im_poses.requires_grad_(False)
self.norm_pw_scale = False
def preset_focal(self, known_focals, msk=None):
self._check_all_imgs_are_selected(msk)
for idx, focal in zip(self._get_msk_indices(msk), known_focals):
if self.verbose:
print(f' (setting focal #{idx} = {focal})')
self._no_grad(self._set_focal(idx, focal))
self.im_focals.requires_grad_(False)
def preset_principal_point(self, known_pp, msk=None):
self._check_all_imgs_are_selected(msk)
for idx, pp in zip(self._get_msk_indices(msk), known_pp):
if self.verbose:
print(f' (setting principal point #{idx} = {pp})')
self._no_grad(self._set_principal_point(idx, pp))
self.im_pp.requires_grad_(False)
def _get_msk_indices(self, msk):
if msk is None:
return range(self.n_imgs)
elif isinstance(msk, int):
return [msk]
elif isinstance(msk, (tuple, list)):
return self._get_msk_indices(np.array(msk))
elif msk.dtype in (bool, torch.bool, np.bool_):
assert len(msk) == self.n_imgs
return np.where(msk)[0]
elif np.issubdtype(msk.dtype, np.integer):
return msk
else:
raise ValueError(f'bad {msk=}')
def _no_grad(self, tensor):
assert tensor.requires_grad, 'it must be True at this point, otherwise no modification occurs'
def _set_focal(self, idx, focal, force=False):
param = self.im_focals[idx]
if param.requires_grad or force: # can only init a parameter not already initialized
param.data[:] = self.focal_break * np.log(focal)
return param
def get_focals(self):
log_focals = torch.stack(list(self.im_focals), dim=0)
return (log_focals / self.focal_break).exp()
def get_known_focal_mask(self):
return torch.tensor([not (p.requires_grad) for p in self.im_focals])
def _set_principal_point(self, idx, pp, force=False):
param = self.im_pp[idx]
H, W = self.imshapes[idx]
if param.requires_grad or force: # can only init a parameter not already initialized
param.data[:] = to_cpu(to_numpy(pp) - (W/2, H/2)) / 10
return param
def get_principal_points(self):
return self._pp + 10 * self.im_pp
def get_intrinsics(self):
K = torch.zeros((self.n_imgs, 3, 3), device=self.device)
focals = self.get_focals().flatten()
K[:, 0, 0] = K[:, 1, 1] = focals
K[:, :2, 2] = self.get_principal_points()
K[:, 2, 2] = 1
return K
def get_im_poses(self): # cam to world
cam2world = self._get_poses(self.im_poses)
return cam2world
def _set_depthmap(self, idx, depth, force=False):
depth = _ravel_hw(depth, self.max_area)
param = self.im_depthmaps[idx]
if param.requires_grad or force: # can only init a parameter not already initialized
param.data[:] = depth.log().nan_to_num(neginf=0)
return param
def get_depthmaps(self, raw=False):
res = self.im_depthmaps.exp()
if not raw:
res = [dm[:h*w].view(h, w) for dm, (h, w) in zip(res, self.imshapes)]
return res
def depth_to_pts3d(self):
# Get depths and projection params if not provided
focals = self.get_focals()
pp = self.get_principal_points()
im_poses = self.get_im_poses()
depth = self.get_depthmaps(raw=True)
# get pointmaps in camera frame
rel_ptmaps = _fast_depthmap_to_pts3d(depth, self._grid, focals, pp=pp)
# project to world frame
return geotrf(im_poses, rel_ptmaps)
def get_pts3d(self, raw=False):
res = self.depth_to_pts3d()
if not raw:
res = [dm[:h*w].view(h, w, 3) for dm, (h, w) in zip(res, self.imshapes)]
return res
def forward(self):
pw_poses = self.get_pw_poses() # cam-to-world
pw_adapt = self.get_adaptors().unsqueeze(1)
proj_pts3d = self.get_pts3d(raw=True)
# rotate pairwise prediction according to pw_poses
aligned_pred_i = geotrf(pw_poses, pw_adapt * self._stacked_pred_i)
aligned_pred_j = geotrf(pw_poses, pw_adapt * self._stacked_pred_j)
# compute the less
li = self.dist(proj_pts3d[self._ei], aligned_pred_i, weight=self._weight_i).sum() / self.total_area_i
lj = self.dist(proj_pts3d[self._ej], aligned_pred_j, weight=self._weight_j).sum() / self.total_area_j
return li + lj
def _fast_depthmap_to_pts3d(depth, pixel_grid, focal, pp):
pp = pp.unsqueeze(1)
focal = focal.unsqueeze(1)
assert focal.shape == (len(depth), 1, 1)
assert pp.shape == (len(depth), 1, 2)
assert pixel_grid.shape == depth.shape + (2,)
depth = depth.unsqueeze(-1)
return torch.cat((depth * (pixel_grid - pp) / focal, depth), dim=-1)
def ParameterStack(params, keys=None, is_param=None, fill=0):
if keys is not None:
params = [params[k] for k in keys]
if fill > 0:
params = [_ravel_hw(p, fill) for p in params]
requires_grad = params[0].requires_grad
assert all(p.requires_grad == requires_grad for p in params)
params = torch.stack(list(params)).float().detach()
if is_param or requires_grad:
params = nn.Parameter(params)
params.requires_grad_(requires_grad)
return params
def _ravel_hw(tensor, fill=0):
# ravel H,W
tensor = tensor.view((tensor.shape[0] * tensor.shape[1],) + tensor.shape[2:])
if len(tensor) < fill:
tensor = torch.cat((tensor, tensor.new_zeros((fill - len(tensor),)+tensor.shape[1:])))
return tensor
def acceptable_focal_range(H, W, minf=0.5, maxf=3.5):
focal_base = max(H, W) / (2 * np.tan(np.deg2rad(60) / 2)) # size / 1.1547005383792515
return minf*focal_base, maxf*focal_base
def apply_mask(img, msk):
img = img.copy()
img[msk] = 0
return img
|