# Copyright 2024 Anton Obukhov, ETH Zurich. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -------------------------------------------------------------------------- # If you find this code useful, we kindly ask you to cite our paper in your work. # Please find bibtex at: https://github.com/prs-eth/Marigold#-citation # More information about the method can be found at https://marigoldmonodepth.github.io # -------------------------------------------------------------------------- from __future__ import annotations import functools import os import tempfile import diffusers import gradio as gr import imageio as imageio import numpy as np import spaces import torch as torch torch.backends.cuda.matmul.allow_tf32 = True from PIL import Image from gradio_imageslider import ImageSlider from tqdm import tqdm from pathlib import Path import gradio from gradio.utils import get_cache_folder from stablenormal.pipeline_yoso_normal import YOSONormalsPipeline from stablenormal.pipeline_stablenormal import StableNormalPipeline from stablenormal.scheduler.heuristics_ddimsampler import HEURI_DDIMScheduler class Examples(gradio.helpers.Examples): def __init__(self, *args, directory_name=None, **kwargs): super().__init__(*args, **kwargs, _initiated_directly=False) if directory_name is not None: self.cached_folder = get_cache_folder() / directory_name self.cached_file = Path(self.cached_folder) / "log.csv" self.create() default_seed = 2024 default_batch_size = 1 default_image_processing_resolution = 768 default_video_num_inference_steps = 10 default_video_processing_resolution = 768 default_video_out_max_frames = 60 def process_image_check(path_input): if path_input is None: raise gr.Error( "Missing image in the first pane: upload a file or use one from the gallery below." ) def resize_image(input_image, resolution): # Ensure input_image is a PIL Image object if not isinstance(input_image, Image.Image): raise ValueError("input_image should be a PIL Image object") # Convert image to numpy array input_image_np = np.asarray(input_image) # Get image dimensions H, W, C = input_image_np.shape H = float(H) W = float(W) # Calculate the scaling factor k = float(resolution) / min(H, W) # Determine new dimensions H *= k W *= k H = int(np.round(H / 64.0)) * 64 W = int(np.round(W / 64.0)) * 64 # Resize the image using PIL's resize method img = input_image.resize((W, H), Image.Resampling.LANCZOS) return img def process_image( pipe, path_input, ): name_base, name_ext = os.path.splitext(os.path.basename(path_input)) print(f"Processing image {name_base}{name_ext}") path_output_dir = tempfile.mkdtemp() path_out_png = os.path.join(path_output_dir, f"{name_base}_normal_colored.png") input_image = Image.open(path_input) input_image = resize_image(input_image, default_image_processing_resolution) pipe_out = pipe( input_image, match_input_resolution=False, processing_resolution=max(input_image.size) ) normal_pred = pipe_out.prediction[0, :, :] normal_colored = pipe.image_processor.visualize_normals(pipe_out.prediction) normal_colored[-1].save(path_out_png) yield [input_image, path_out_png] def center_crop(img): # Open the image file img_width, img_height = img.size crop_width =min(img_width, img_height) # Calculate the cropping box left = (img_width - crop_width) / 2 top = (img_height - crop_width) / 2 right = (img_width + crop_width) / 2 bottom = (img_height + crop_width) / 2 # Crop the image img_cropped = img.crop((left, top, right, bottom)) return img_cropped def process_video( pipe, path_input, out_max_frames=default_video_out_max_frames, target_fps=10, progress=gr.Progress(), ): if path_input is None: raise gr.Error( "Missing video in the first pane: upload a file or use one from the gallery below." ) name_base, name_ext = os.path.splitext(os.path.basename(path_input)) print(f"Processing video {name_base}{name_ext}") path_output_dir = tempfile.mkdtemp() path_out_vis = os.path.join(path_output_dir, f"{name_base}_normal_colored.mp4") init_latents = None reader, writer = None, None try: reader = imageio.get_reader(path_input) meta_data = reader.get_meta_data() fps = meta_data["fps"] size = meta_data["size"] duration_sec = meta_data["duration"] writer = imageio.get_writer(path_out_vis, fps=target_fps) out_frame_id = 0 pbar = tqdm(desc="Processing Video", total=duration_sec) for frame_id, frame in enumerate(reader): if frame_id % (fps // target_fps) != 0: continue else: out_frame_id += 1 pbar.update(1) if out_frame_id > out_max_frames: break frame_pil = Image.fromarray(frame) frame_pil = center_crop(frame_pil) pipe_out = pipe( frame_pil, match_input_resolution=False, latents=init_latents ) if init_latents is None: init_latents = pipe_out.gaus_noise processed_frame = pipe.image_processor.visualize_normals( # noqa pipe_out.prediction )[0] processed_frame = np.array(processed_frame) _processed_frame = imageio.core.util.Array(processed_frame) writer.append_data(_processed_frame) yield ( [frame_pil, processed_frame], None, ) finally: if writer is not None: writer.close() if reader is not None: reader.close() yield ( [frame_pil, processed_frame], [path_out_vis,] ) def run_demo_server(pipe): process_pipe_image = spaces.GPU(functools.partial(process_image, pipe)) process_pipe_video = spaces.GPU( functools.partial(process_video, pipe), duration=120 ) gradio_theme = gr.themes.Default() with gr.Blocks( theme=gradio_theme, title="Stable Normal Estimation", css=""" #download { height: 118px; } .slider .inner { width: 5px; background: #FFF; } .viewport { aspect-ratio: 4/3; } .tabs button.selected { font-size: 20px !important; color: crimson !important; } h1 { text-align: center; display: block; } h2 { text-align: center; display: block; } h3 { text-align: center; display: block; } .md_feedback li { margin-bottom: 0px !important; } """, head=""" """, ) as demo: gr.Markdown( """ # StableNormal: Reducing Diffusion Variance for Stable and Sharp Normal
""" ) with gr.Tabs(elem_classes=["tabs"]): with gr.Tab("Image"): with gr.Row(): with gr.Column(): image_input = gr.Image( label="Input Image", type="filepath", ) with gr.Row(): image_submit_btn = gr.Button( value="Compute Normal", variant="primary" ) image_reset_btn = gr.Button(value="Reset") with gr.Column(): image_output_slider = ImageSlider( label="Normal outputs", type="filepath", show_download_button=True, show_share_button=True, interactive=False, elem_classes="slider", position=0.25, ) Examples( fn=process_pipe_image, examples=sorted([ os.path.join("files", "image", name) for name in os.listdir(os.path.join("files", "image")) ]), inputs=[image_input], outputs=[image_output_slider], cache_examples=True, directory_name="examples_image", ) with gr.Tab("Video"): with gr.Row(): with gr.Column(): video_input = gr.Video( label="Input Video", sources=["upload", "webcam"], ) with gr.Row(): video_submit_btn = gr.Button( value="Compute Normal", variant="primary" ) video_reset_btn = gr.Button(value="Reset") with gr.Column(): processed_frames = ImageSlider( label="Realtime Visualization", type="filepath", show_download_button=True, show_share_button=True, interactive=False, elem_classes="slider", position=0.25, ) video_output_files = gr.Files( label="Normal outputs", elem_id="download", interactive=False, ) Examples( fn=process_pipe_video, examples=sorted([ os.path.join("files", "video", name) for name in os.listdir(os.path.join("files", "video")) ]), inputs=[video_input], outputs=[processed_frames, video_output_files], directory_name="examples_video", cache_examples=False, ) with gr.Tab("Panorama"): with gr.Column(): gr.Markdown("Coming soon") with gr.Tab("4K Image"): with gr.Column(): gr.Markdown("Coming soon") ### Image tab image_submit_btn.click( fn=process_image_check, inputs=image_input, outputs=None, preprocess=False, queue=False, ).success( fn=process_pipe_image, inputs=[ image_input, ], outputs=[image_output_slider], concurrency_limit=1, ) image_reset_btn.click( fn=lambda: ( None, None, None, ), inputs=[], outputs=[ image_input, image_output_slider, ], queue=False, ) ### Video tab video_submit_btn.click( fn=process_pipe_video, inputs=[video_input], outputs=[processed_frames, video_output_files], concurrency_limit=1, ) video_reset_btn.click( fn=lambda: (None, None, None), inputs=[], outputs=[video_input, processed_frames, video_output_files], concurrency_limit=1, ) ### Server launch demo.queue( api_open=False, ).launch( server_name="0.0.0.0", server_port=7860, ) def main(): os.system("pip freeze") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") x_start_pipeline = YOSONormalsPipeline.from_pretrained( 'Stable-X/yoso-normal-v0-2', trust_remote_code=True, variant="fp16", torch_dtype=torch.float16).to(device) pipe = StableNormalPipeline.from_pretrained('Stable-X/stable-normal-v0-1', trust_remote_code=True, variant="fp16", torch_dtype=torch.float16, scheduler=HEURI_DDIMScheduler(prediction_type='sample', beta_start=0.00085, beta_end=0.0120, beta_schedule = "scaled_linear")) pipe.x_start_pipeline = x_start_pipeline pipe.to(device) pipe.prior.to(device, torch.float16) try: import xformers pipe.enable_xformers_memory_efficient_attention() except: pass # run without xformers run_demo_server(pipe) if __name__ == "__main__": main()