import os import gradio as gr import asyncio from langchain_core.prompts import PromptTemplate from langchain_community.output_parsers.rail_parser import GuardrailsOutputParser from langchain_community.document_loaders import PyPDFLoader from langchain_google_genai import ChatGoogleGenerativeAI import google.generativeai as genai from langchain.chains.question_answering import load_qa_chain import torch from transformers import AutoTokenizer, AutoModelForCausalLM # Gemini initialization and PDF QA function async def initialize_gemini(file_path, question): genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) prompt_template = """Answer the question as precise as possible using the provided context. If the answer is not contained in the context, say "answer not available in context" \n\n Context: \n {context}?\n Question: \n {question} \n Answer: """ prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) if os.path.exists(file_path): pdf_loader = PyPDFLoader(file_path) pages = pdf_loader.load_and_split() context = "\n".join(str(page.page_content) for page in pages[:100]) stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) stuff_answer = stuff_chain({"input_documents": pages, "question": question, "context": context}, return_only_outputs=True) return stuff_answer['output_text'] else: return "Error: Unable to process the document. Please ensure the PDF file is valid." # Mistral model initialization def initialize_mistral(): model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base" tokenizer = AutoTokenizer.from_pretrained(model_path) device = 'cuda' if torch.cuda.is_available() else 'cpu' dtype = torch.bfloat16 model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device) return tokenizer, model # Mistral text generation function def generate_mistral_text(prompt, tokenizer, model): inputs = tokenizer.encode(prompt, return_tensors='pt').to(model.device) outputs = model.generate(inputs, max_length=100) return tokenizer.decode(outputs[0]) # Initialize Mistral model mistral_tokenizer, mistral_model = initialize_mistral() # Gradio interface function async def pdf_qa(file, question): gemini_answer = await initialize_gemini(file.name, question) mistral_prompt = f"Based on this answer: '{gemini_answer}', provide a brief summary:" mistral_summary = generate_mistral_text(mistral_prompt, mistral_tokenizer, mistral_model) return f"Gemini Answer:\n{gemini_answer}\n\nMistral Summary:\n{mistral_summary}" # Define Gradio Interface input_file = gr.File(label="Upload PDF File") input_question = gr.Textbox(label="Ask about the document") output_text = gr.Textbox(label="Answer and Summary") # Create Gradio Interface gr.Interface( fn=pdf_qa, inputs=[input_file, input_question], outputs=output_text, title="PDF Question Answering System with Gemini and Mistral", description="Upload a PDF file, ask questions about the content, and get answers from Gemini with a summary from Mistral." ).launch()