Speedofmastery commited on
Commit
83a2411
·
1 Parent(s): 04f4e13

Auto-commit: app_complete.py updated

Browse files
Files changed (1) hide show
  1. app_complete.py +317 -220
app_complete.py CHANGED
@@ -13,106 +13,192 @@ CLOUDFLARE_CONFIG = {
13
  "d1_database_id": os.getenv("CLOUDFLARE_D1_DATABASE_ID", ""),
14
  "r2_bucket_name": os.getenv("CLOUDFLARE_R2_BUCKET_NAME", ""),
15
  "kv_namespace_id": os.getenv("CLOUDFLARE_KV_NAMESPACE_ID", ""),
16
- "durable_objects_id": os.getenv("CLOUDFLARE_DURABLE_OBJECTS_ID", "")
17
  }
18
 
19
  # AI Model Categories with 200+ models
20
  AI_MODELS = {
21
  "Text Generation": {
22
  "Qwen Models": [
23
- "Qwen/Qwen2.5-72B-Instruct", "Qwen/Qwen2.5-32B-Instruct", "Qwen/Qwen2.5-14B-Instruct",
24
- "Qwen/Qwen2.5-7B-Instruct", "Qwen/Qwen2.5-3B-Instruct", "Qwen/Qwen2.5-1.5B-Instruct",
25
- "Qwen/Qwen2.5-0.5B-Instruct", "Qwen/Qwen2-72B-Instruct", "Qwen/Qwen2-57B-A14B-Instruct",
26
- "Qwen/Qwen2-7B-Instruct", "Qwen/Qwen2-1.5B-Instruct", "Qwen/Qwen2-0.5B-Instruct",
27
- "Qwen/Qwen1.5-110B-Chat", "Qwen/Qwen1.5-72B-Chat", "Qwen/Qwen1.5-32B-Chat",
28
- "Qwen/Qwen1.5-14B-Chat", "Qwen/Qwen1.5-7B-Chat", "Qwen/Qwen1.5-4B-Chat",
29
- "Qwen/Qwen1.5-1.8B-Chat", "Qwen/Qwen1.5-0.5B-Chat", "Qwen/CodeQwen1.5-7B-Chat",
30
- "Qwen/Qwen2.5-Math-72B-Instruct", "Qwen/Qwen2.5-Math-7B-Instruct", "Qwen/Qwen2.5-Coder-32B-Instruct",
31
- "Qwen/Qwen2.5-Coder-14B-Instruct", "Qwen/Qwen2.5-Coder-7B-Instruct", "Qwen/Qwen2.5-Coder-3B-Instruct",
32
- "Qwen/Qwen2.5-Coder-1.5B-Instruct", "Qwen/Qwen2.5-Coder-0.5B-Instruct", "Qwen/QwQ-32B-Preview",
33
- "Qwen/Qwen2-VL-72B-Instruct", "Qwen/Qwen2-VL-7B-Instruct", "Qwen/Qwen2-VL-2B-Instruct",
34
- "Qwen/Qwen2-Audio-7B-Instruct", "Qwen/Qwen-Agent-Chat", "Qwen/Qwen-VL-Chat"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  ],
36
  "DeepSeek Models": [
37
- "deepseek-ai/deepseek-llm-67b-chat", "deepseek-ai/deepseek-llm-7b-chat",
38
- "deepseek-ai/deepseek-coder-33b-instruct", "deepseek-ai/deepseek-coder-7b-instruct",
39
- "deepseek-ai/deepseek-coder-6.7b-instruct", "deepseek-ai/deepseek-coder-1.3b-instruct",
40
- "deepseek-ai/DeepSeek-V2-Chat", "deepseek-ai/DeepSeek-V2-Lite-Chat",
41
- "deepseek-ai/deepseek-math-7b-instruct", "deepseek-ai/deepseek-moe-16b-chat",
42
- "deepseek-ai/deepseek-vl-7b-chat", "deepseek-ai/deepseek-vl-1.3b-chat",
43
- "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B",
44
- "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B", "deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
45
- "deepseek-ai/DeepSeek-Reasoner-R1"
46
- ]
 
 
 
 
 
 
 
 
47
  },
48
  "Image Processing": {
49
  "Image Generation": [
50
- "black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-pro",
51
- "runwayml/stable-diffusion-v1-5", "stabilityai/stable-diffusion-xl-base-1.0",
52
- "stabilityai/stable-diffusion-3-medium-diffusers", "stabilityai/sd-turbo",
53
- "kandinsky-community/kandinsky-2-2-decoder", "playgroundai/playground-v2.5-1024px-aesthetic",
54
- "midjourney/midjourney-v6"
 
 
 
 
 
55
  ],
56
  "Image Editing": [
57
- "timbrooks/instruct-pix2pix", "runwayml/stable-diffusion-inpainting",
58
- "stabilityai/stable-diffusion-xl-refiner-1.0", "lllyasviel/control_v11p_sd15_inpaint",
59
- "SG161222/RealVisXL_V4.0", "ByteDance/SDXL-Lightning", "segmind/SSD-1B",
60
- "segmind/Segmind-Vega", "playgroundai/playground-v2-1024px-aesthetic",
61
- "stabilityai/stable-cascade"
 
 
 
 
 
62
  ],
63
  "Face Processing": [
64
- "InsightFace/inswapper_128.onnx", "deepinsight/insightface", "TencentARC/GFPGAN",
65
- "sczhou/CodeFormer", "xinntao/Real-ESRGAN", "ESRGAN/ESRGAN"
66
- ]
 
 
 
 
67
  },
68
  "Audio Processing": {
69
  "Text-to-Speech": [
70
- "microsoft/speecht5_tts", "facebook/mms-tts-eng", "facebook/mms-tts-ara",
71
- "coqui/XTTS-v2", "suno/bark", "parler-tts/parler-tts-large-v1",
72
- "microsoft/DisTTS", "facebook/fastspeech2-en-ljspeech", "espnet/kan-bayashi_ljspeech_vits",
73
- "facebook/tts_transformer-en-ljspeech", "microsoft/SpeechT5", "Voicemod/fastspeech2-en-male1",
74
- "facebook/mms-tts-spa", "facebook/mms-tts-fra", "facebook/mms-tts-deu"
 
 
 
 
 
 
 
 
 
 
75
  ],
76
  "Speech-to-Text": [
77
- "openai/whisper-large-v3", "openai/whisper-large-v2", "openai/whisper-medium",
78
- "openai/whisper-small", "openai/whisper-base", "openai/whisper-tiny",
79
- "facebook/wav2vec2-large-960h", "facebook/wav2vec2-base-960h",
80
- "microsoft/unispeech-sat-large", "nvidia/stt_en_conformer_ctc_large",
81
- "speechbrain/asr-wav2vec2-commonvoice-en", "facebook/mms-1b-all", "facebook/seamless-m4t-v2-large",
82
- "distil-whisper/distil-large-v3", "distil-whisper/distil-medium.en"
83
- ]
 
 
 
 
 
 
 
 
 
84
  },
85
  "Multimodal AI": {
86
  "Vision-Language": [
87
- "microsoft/DialoGPT-large", "microsoft/blip-image-captioning-large",
88
- "microsoft/blip2-opt-6.7b", "microsoft/blip2-flan-t5-xl",
89
- "salesforce/blip-vqa-capfilt-large", "dandelin/vilt-b32-finetuned-vqa",
90
- "google/pix2struct-ai2d-base", "microsoft/git-large-coco", "microsoft/git-base-vqa",
91
- "liuhaotian/llava-v1.6-34b", "liuhaotian/llava-v1.6-vicuna-7b"
 
 
 
 
 
 
92
  ],
93
  "Talking Avatars": [
94
- "microsoft/SpeechT5-TTS-Avatar", "Wav2Lip-HD", "First-Order-Model",
95
- "LipSync-Expert", "DeepFaceLive", "FaceSwapper-Live", "RealTime-FaceRig",
96
- "AI-Avatar-Generator", "TalkingHead-3D"
97
- ]
 
 
 
 
 
 
98
  },
99
  "Arabic-English Models": [
100
- "aubmindlab/bert-base-arabertv2", "aubmindlab/aragpt2-base", "aubmindlab/aragpt2-medium",
101
- "CAMeL-Lab/bert-base-arabic-camelbert-mix", "asafaya/bert-base-arabic",
102
- "UBC-NLP/MARBERT", "UBC-NLP/ARBERTv2", "facebook/nllb-200-3.3B",
103
- "facebook/m2m100_1.2B", "Helsinki-NLP/opus-mt-ar-en", "Helsinki-NLP/opus-mt-en-ar",
104
- "microsoft/DialoGPT-medium-arabic"
105
- ]
 
 
 
 
 
 
 
106
  }
107
 
 
108
  def init_database():
109
  """Initialize SQLite database for authentication"""
110
  db_path = Path("openmanus.db")
111
  conn = sqlite3.connect(db_path)
112
  cursor = conn.cursor()
113
-
114
  # Create users table
115
- cursor.execute("""
 
116
  CREATE TABLE IF NOT EXISTS users (
117
  id INTEGER PRIMARY KEY AUTOINCREMENT,
118
  mobile_number TEXT UNIQUE NOT NULL,
@@ -122,10 +208,12 @@ def init_database():
122
  last_login TIMESTAMP,
123
  is_active BOOLEAN DEFAULT 1
124
  )
125
- """)
126
-
 
127
  # Create sessions table
128
- cursor.execute("""
 
129
  CREATE TABLE IF NOT EXISTS sessions (
130
  id TEXT PRIMARY KEY,
131
  user_id INTEGER NOT NULL,
@@ -135,10 +223,12 @@ def init_database():
135
  user_agent TEXT,
136
  FOREIGN KEY (user_id) REFERENCES users (id)
137
  )
138
- """)
139
-
 
140
  # Create model usage table
141
- cursor.execute("""
 
142
  CREATE TABLE IF NOT EXISTS model_usage (
143
  id INTEGER PRIMARY KEY AUTOINCREMENT,
144
  user_id INTEGER,
@@ -150,228 +240,236 @@ def init_database():
150
  processing_time REAL,
151
  FOREIGN KEY (user_id) REFERENCES users (id)
152
  )
153
- """)
154
-
 
155
  conn.commit()
156
  conn.close()
157
  return True
158
 
 
159
  def hash_password(password):
160
  """Hash password using SHA-256"""
161
  return hashlib.sha256(password.encode()).hexdigest()
162
 
 
163
  def signup_user(mobile, name, password, confirm_password):
164
  """User registration with mobile number"""
165
  if not all([mobile, name, password, confirm_password]):
166
  return "❌ Please fill in all fields"
167
-
168
  if password != confirm_password:
169
  return "❌ Passwords do not match"
170
-
171
  if len(password) < 6:
172
  return "❌ Password must be at least 6 characters"
173
-
174
  # Validate mobile number
175
  if not mobile.replace("+", "").replace("-", "").replace(" ", "").isdigit():
176
  return "❌ Please enter a valid mobile number"
177
-
178
  try:
179
  conn = sqlite3.connect("openmanus.db")
180
  cursor = conn.cursor()
181
-
182
  # Check if mobile number already exists
183
  cursor.execute("SELECT id FROM users WHERE mobile_number = ?", (mobile,))
184
  if cursor.fetchone():
185
  conn.close()
186
  return "❌ Mobile number already registered"
187
-
188
  # Create new user
189
  password_hash = hash_password(password)
190
- cursor.execute("""
 
191
  INSERT INTO users (mobile_number, full_name, password_hash)
192
  VALUES (?, ?, ?)
193
- """, (mobile, name, password_hash))
194
-
 
 
195
  conn.commit()
196
  conn.close()
197
-
198
  return f"✅ Account created successfully for {name}! Welcome to OpenManus Platform."
199
-
200
  except Exception as e:
201
  return f"❌ Registration failed: {str(e)}"
202
 
 
203
  def login_user(mobile, password):
204
  """User authentication"""
205
  if not mobile or not password:
206
  return "❌ Please provide mobile number and password"
207
-
208
  try:
209
  conn = sqlite3.connect("openmanus.db")
210
  cursor = conn.cursor()
211
-
212
  # Verify credentials
213
  password_hash = hash_password(password)
214
- cursor.execute("""
215
- SELECT id, full_name FROM users
 
216
  WHERE mobile_number = ? AND password_hash = ? AND is_active = 1
217
- """, (mobile, password_hash))
218
-
 
 
219
  user = cursor.fetchone()
220
  if user:
221
  # Update last login
222
- cursor.execute("""
 
223
  UPDATE users SET last_login = CURRENT_TIMESTAMP WHERE id = ?
224
- """, (user[0],))
 
 
225
  conn.commit()
226
  conn.close()
227
-
228
  return f"✅ Welcome back, {user[1]}! Login successful."
229
  else:
230
  conn.close()
231
  return "❌ Invalid mobile number or password"
232
-
233
  except Exception as e:
234
  return f"❌ Login failed: {str(e)}"
235
 
 
236
  def use_ai_model(model_name, input_text, user_session="guest"):
237
  """Simulate AI model usage"""
238
  if not input_text.strip():
239
  return "Please enter some text for the AI model to process."
240
-
241
  # Simulate model processing
242
  response_templates = {
243
  "text": f"🧠 {model_name} processed: '{input_text}'\n\n✨ AI Response: This is a simulated response from the {model_name} model. In production, this would connect to the actual model API.",
244
  "image": f"🖼️ {model_name} would generate/edit an image based on: '{input_text}'\n\n📸 Output: Image processing complete (simulated)",
245
  "audio": f"🎵 {model_name} audio processing for: '{input_text}'\n\n🔊 Output: Audio generated/processed (simulated)",
246
- "multimodal": f"🤖 {model_name} multimodal processing: '{input_text}'\n\n🎯 Output: Combined AI analysis complete (simulated)"
247
  }
248
-
249
  # Determine response type based on model
250
- if any(x in model_name.lower() for x in ["image", "flux", "diffusion", "face", "avatar"]):
 
 
 
251
  response_type = "image"
252
- elif any(x in model_name.lower() for x in ["tts", "speech", "audio", "whisper", "wav2vec"]):
253
- response_type = "audio"
 
 
 
254
  elif any(x in model_name.lower() for x in ["vl", "blip", "vision", "talking"]):
255
  response_type = "multimodal"
256
  else:
257
  response_type = "text"
258
-
259
  return response_templates[response_type]
260
 
 
261
  def get_cloudflare_status():
262
  """Get Cloudflare services status"""
263
  services = []
264
-
265
  if CLOUDFLARE_CONFIG["d1_database_id"]:
266
  services.append("✅ D1 Database Connected")
267
  else:
268
  services.append("⚙️ D1 Database (Configure CLOUDFLARE_D1_DATABASE_ID)")
269
-
270
  if CLOUDFLARE_CONFIG["r2_bucket_name"]:
271
- services.append("✅ R2 Storage Connected")
272
  else:
273
  services.append("⚙️ R2 Storage (Configure CLOUDFLARE_R2_BUCKET_NAME)")
274
-
275
  if CLOUDFLARE_CONFIG["kv_namespace_id"]:
276
  services.append("✅ KV Cache Connected")
277
  else:
278
  services.append("⚙️ KV Cache (Configure CLOUDFLARE_KV_NAMESPACE_ID)")
279
-
280
  if CLOUDFLARE_CONFIG["durable_objects_id"]:
281
  services.append("✅ Durable Objects Connected")
282
  else:
283
  services.append("⚙️ Durable Objects (Configure CLOUDFLARE_DURABLE_OBJECTS_ID)")
284
-
285
  return "\n".join(services)
286
 
 
287
  # Initialize database
288
  init_database()
289
 
290
  # Create Gradio interface
291
  with gr.Blocks(
292
- title="OpenManus - Complete AI Platform",
293
  theme=gr.themes.Soft(),
294
  css="""
295
  .container { max-width: 1400px; margin: 0 auto; }
296
  .header { text-align: center; padding: 25px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; border-radius: 15px; margin-bottom: 25px; }
297
  .section { background: white; padding: 25px; border-radius: 15px; margin: 15px 0; box-shadow: 0 4px 15px rgba(0,0,0,0.1); }
298
- """
299
  ) as app:
300
-
301
  # Header
302
- gr.HTML("""
 
303
  <div class="header">
304
  <h1>🤖 OpenManus - Complete AI Platform</h1>
305
  <p><strong>Mobile Authentication + 200+ AI Models + Cloudflare Services</strong></p>
306
  <p>🧠 Qwen & DeepSeek | 🖼️ Image Processing | 🎵 TTS/STT | 👤 Face Swap | 🌍 Arabic-English | ☁️ Cloud Integration</p>
307
  </div>
308
- """)
309
-
 
310
  with gr.Row():
311
  # Authentication Section
312
  with gr.Column(scale=1, elem_classes="section"):
313
  gr.Markdown("## 🔐 Authentication System")
314
-
315
  with gr.Tab("Sign Up"):
316
  gr.Markdown("### Create New Account")
317
  signup_mobile = gr.Textbox(
318
- label="Mobile Number",
319
  placeholder="+1234567890",
320
- info="Enter your mobile number with country code"
321
  )
322
  signup_name = gr.Textbox(
323
- label="Full Name",
324
- placeholder="Your full name"
325
  )
326
  signup_password = gr.Textbox(
327
- label="Password",
328
- type="password",
329
- info="Minimum 6 characters"
330
- )
331
- signup_confirm = gr.Textbox(
332
- label="Confirm Password",
333
- type="password"
334
  )
 
335
  signup_btn = gr.Button("Create Account", variant="primary")
336
  signup_result = gr.Textbox(
337
- label="Registration Status",
338
- interactive=False,
339
- lines=2
340
  )
341
-
342
  signup_btn.click(
343
  signup_user,
344
  [signup_mobile, signup_name, signup_password, signup_confirm],
345
- signup_result
346
  )
347
-
348
  with gr.Tab("Login"):
349
  gr.Markdown("### Access Your Account")
350
  login_mobile = gr.Textbox(
351
- label="Mobile Number",
352
- placeholder="+1234567890"
353
- )
354
- login_password = gr.Textbox(
355
- label="Password",
356
- type="password"
357
  )
 
358
  login_btn = gr.Button("Login", variant="primary")
359
  login_result = gr.Textbox(
360
- label="Login Status",
361
- interactive=False,
362
- lines=2
363
  )
364
-
365
  login_btn.click(
366
- login_user,
367
- [login_mobile, login_password],
368
- login_result
369
  )
370
-
371
- # AI Models Section
372
  with gr.Column(scale=2, elem_classes="section"):
373
  gr.Markdown("## 🤖 AI Models Hub (200+ Models)")
374
-
375
  with gr.Tab("Text Generation"):
376
  with gr.Row():
377
  with gr.Column():
@@ -379,41 +477,43 @@ with gr.Blocks(
379
  qwen_model = gr.Dropdown(
380
  choices=AI_MODELS["Text Generation"]["Qwen Models"],
381
  label="Select Qwen Model",
382
- value="Qwen/Qwen2.5-72B-Instruct"
383
  )
384
  qwen_input = gr.Textbox(
385
  label="Input Text",
386
  placeholder="Enter your prompt for Qwen...",
387
- lines=3
388
  )
389
  qwen_btn = gr.Button("Generate with Qwen")
390
  qwen_output = gr.Textbox(
391
- label="Qwen Response",
392
- lines=5,
393
- interactive=False
394
  )
395
- qwen_btn.click(use_ai_model, [qwen_model, qwen_input], qwen_output)
396
-
 
 
397
  with gr.Column():
398
  gr.Markdown("### DeepSeek Models (17 models)")
399
  deepseek_model = gr.Dropdown(
400
  choices=AI_MODELS["Text Generation"]["DeepSeek Models"],
401
- label="Select DeepSeek Model",
402
- value="deepseek-ai/deepseek-llm-67b-chat"
403
  )
404
  deepseek_input = gr.Textbox(
405
  label="Input Text",
406
  placeholder="Enter your prompt for DeepSeek...",
407
- lines=3
408
  )
409
  deepseek_btn = gr.Button("Generate with DeepSeek")
410
  deepseek_output = gr.Textbox(
411
- label="DeepSeek Response",
412
- lines=5,
413
- interactive=False
414
  )
415
- deepseek_btn.click(use_ai_model, [deepseek_model, deepseek_input], deepseek_output)
416
-
 
 
 
 
417
  with gr.Tab("Image Processing"):
418
  with gr.Row():
419
  with gr.Column():
@@ -421,41 +521,41 @@ with gr.Blocks(
421
  img_gen_model = gr.Dropdown(
422
  choices=AI_MODELS["Image Processing"]["Image Generation"],
423
  label="Select Image Model",
424
- value="black-forest-labs/FLUX.1-dev"
425
  )
426
  img_prompt = gr.Textbox(
427
  label="Image Prompt",
428
  placeholder="Describe the image you want to generate...",
429
- lines=2
430
  )
431
  img_gen_btn = gr.Button("Generate Image")
432
  img_gen_output = gr.Textbox(
433
- label="Generation Status",
434
- lines=4,
435
- interactive=False
 
436
  )
437
- img_gen_btn.click(use_ai_model, [img_gen_model, img_prompt], img_gen_output)
438
-
439
  with gr.Column():
440
  gr.Markdown("### Face Processing & Editing")
441
  face_model = gr.Dropdown(
442
  choices=AI_MODELS["Image Processing"]["Face Processing"],
443
  label="Select Face Model",
444
- value="InsightFace/inswapper_128.onnx"
445
  )
446
  face_input = gr.Textbox(
447
  label="Face Processing Task",
448
  placeholder="Describe face swap or enhancement task...",
449
- lines=2
450
  )
451
  face_btn = gr.Button("Process Face")
452
  face_output = gr.Textbox(
453
- label="Processing Status",
454
- lines=4,
455
- interactive=False
 
456
  )
457
- face_btn.click(use_ai_model, [face_model, face_input], face_output)
458
-
459
  with gr.Tab("Audio Processing"):
460
  with gr.Row():
461
  with gr.Column():
@@ -463,41 +563,37 @@ with gr.Blocks(
463
  tts_model = gr.Dropdown(
464
  choices=AI_MODELS["Audio Processing"]["Text-to-Speech"],
465
  label="Select TTS Model",
466
- value="microsoft/speecht5_tts"
467
  )
468
  tts_text = gr.Textbox(
469
  label="Text to Speak",
470
  placeholder="Enter text to convert to speech...",
471
- lines=3
472
  )
473
  tts_btn = gr.Button("Generate Speech")
474
  tts_output = gr.Textbox(
475
- label="TTS Status",
476
- lines=4,
477
- interactive=False
478
  )
479
  tts_btn.click(use_ai_model, [tts_model, tts_text], tts_output)
480
-
481
  with gr.Column():
482
  gr.Markdown("### Speech-to-Text (15 models)")
483
  stt_model = gr.Dropdown(
484
  choices=AI_MODELS["Audio Processing"]["Speech-to-Text"],
485
  label="Select STT Model",
486
- value="openai/whisper-large-v3"
487
  )
488
  stt_input = gr.Textbox(
489
  label="Audio Description",
490
  placeholder="Describe audio file to transcribe...",
491
- lines=3
492
  )
493
  stt_btn = gr.Button("Transcribe Audio")
494
  stt_output = gr.Textbox(
495
- label="STT Status",
496
- lines=4,
497
- interactive=False
498
  )
499
  stt_btn.click(use_ai_model, [stt_model, stt_input], stt_output)
500
-
501
  with gr.Tab("Multimodal & Avatars"):
502
  with gr.Row():
503
  with gr.Column():
@@ -505,66 +601,64 @@ with gr.Blocks(
505
  vl_model = gr.Dropdown(
506
  choices=AI_MODELS["Multimodal AI"]["Vision-Language"],
507
  label="Select VL Model",
508
- value="liuhaotian/llava-v1.6-34b"
509
  )
510
  vl_input = gr.Textbox(
511
  label="Vision-Language Task",
512
  placeholder="Describe image analysis or VQA task...",
513
- lines=3
514
  )
515
  vl_btn = gr.Button("Process with VL Model")
516
  vl_output = gr.Textbox(
517
- label="VL Response",
518
- lines=4,
519
- interactive=False
520
  )
521
  vl_btn.click(use_ai_model, [vl_model, vl_input], vl_output)
522
-
523
  with gr.Column():
524
  gr.Markdown("### Talking Avatars")
525
  avatar_model = gr.Dropdown(
526
  choices=AI_MODELS["Multimodal AI"]["Talking Avatars"],
527
  label="Select Avatar Model",
528
- value="Wav2Lip-HD"
529
  )
530
  avatar_input = gr.Textbox(
531
  label="Avatar Generation Task",
532
  placeholder="Describe talking avatar or lip-sync task...",
533
- lines=3
534
  )
535
  avatar_btn = gr.Button("Generate Avatar")
536
  avatar_output = gr.Textbox(
537
- label="Avatar Status",
538
- lines=4,
539
- interactive=False
 
540
  )
541
- avatar_btn.click(use_ai_model, [avatar_model, avatar_input], avatar_output)
542
-
543
  with gr.Tab("Arabic-English"):
544
  gr.Markdown("### Arabic-English Interactive Models (12 models)")
545
  arabic_model = gr.Dropdown(
546
  choices=AI_MODELS["Arabic-English Models"],
547
  label="Select Arabic-English Model",
548
- value="aubmindlab/bert-base-arabertv2"
549
  )
550
  arabic_input = gr.Textbox(
551
  label="Text (Arabic or English)",
552
  placeholder="أدخل النص باللغة العربية أو الإنجليزية / Enter text in Arabic or English...",
553
- lines=4
554
  )
555
  arabic_btn = gr.Button("Process Arabic-English")
556
  arabic_output = gr.Textbox(
557
- label="Processing Result",
558
- lines=6,
559
- interactive=False
 
560
  )
561
- arabic_btn.click(use_ai_model, [arabic_model, arabic_input], arabic_output)
562
-
563
  # Services Status Section
564
  with gr.Row():
565
  with gr.Column(elem_classes="section"):
566
  gr.Markdown("## ☁️ Cloudflare Services Integration")
567
-
568
  with gr.Row():
569
  with gr.Column():
570
  gr.Markdown("### Services Status")
@@ -572,32 +666,34 @@ with gr.Blocks(
572
  label="Cloudflare Services",
573
  value=get_cloudflare_status(),
574
  lines=6,
575
- interactive=False
576
  )
577
  refresh_btn = gr.Button("Refresh Status")
578
  refresh_btn.click(
579
- lambda: get_cloudflare_status(),
580
- outputs=services_status
581
  )
582
-
583
  with gr.Column():
584
  gr.Markdown("### Configuration")
585
- gr.HTML("""
 
586
  <div style="background: #f0f8ff; padding: 15px; border-radius: 10px;">
587
  <h4>Environment Variables:</h4>
588
  <ul>
589
  <li><code>CLOUDFLARE_API_TOKEN</code> - API authentication</li>
590
- <li><code>CLOUDFLARE_ACCOUNT_ID</code> - Account identifier</li>
591
  <li><code>CLOUDFLARE_D1_DATABASE_ID</code> - D1 database</li>
592
  <li><code>CLOUDFLARE_R2_BUCKET_NAME</code> - R2 storage</li>
593
  <li><code>CLOUDFLARE_KV_NAMESPACE_ID</code> - KV cache</li>
594
  <li><code>CLOUDFLARE_DURABLE_OBJECTS_ID</code> - Durable objects</li>
595
  </ul>
596
  </div>
597
- """)
598
-
 
599
  # Footer Status
600
- gr.HTML("""
 
601
  <div style="background: linear-gradient(45deg, #f0f8ff 0%, #e6f3ff 100%); padding: 20px; border-radius: 15px; margin-top: 25px; text-align: center;">
602
  <h3>📊 Platform Status</h3>
603
  <div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 15px; margin: 15px 0;">
@@ -612,7 +708,8 @@ with gr.Blocks(
612
  </div>
613
  <p><em>Complete AI Platform successfully deployed on HuggingFace Spaces with Docker!</em></p>
614
  </div>
615
- """)
 
616
 
617
  if __name__ == "__main__":
618
- app.launch(server_name="0.0.0.0", server_port=7860)
 
13
  "d1_database_id": os.getenv("CLOUDFLARE_D1_DATABASE_ID", ""),
14
  "r2_bucket_name": os.getenv("CLOUDFLARE_R2_BUCKET_NAME", ""),
15
  "kv_namespace_id": os.getenv("CLOUDFLARE_KV_NAMESPACE_ID", ""),
16
+ "durable_objects_id": os.getenv("CLOUDFLARE_DURABLE_OBJECTS_ID", ""),
17
  }
18
 
19
  # AI Model Categories with 200+ models
20
  AI_MODELS = {
21
  "Text Generation": {
22
  "Qwen Models": [
23
+ "Qwen/Qwen2.5-72B-Instruct",
24
+ "Qwen/Qwen2.5-32B-Instruct",
25
+ "Qwen/Qwen2.5-14B-Instruct",
26
+ "Qwen/Qwen2.5-7B-Instruct",
27
+ "Qwen/Qwen2.5-3B-Instruct",
28
+ "Qwen/Qwen2.5-1.5B-Instruct",
29
+ "Qwen/Qwen2.5-0.5B-Instruct",
30
+ "Qwen/Qwen2-72B-Instruct",
31
+ "Qwen/Qwen2-57B-A14B-Instruct",
32
+ "Qwen/Qwen2-7B-Instruct",
33
+ "Qwen/Qwen2-1.5B-Instruct",
34
+ "Qwen/Qwen2-0.5B-Instruct",
35
+ "Qwen/Qwen1.5-110B-Chat",
36
+ "Qwen/Qwen1.5-72B-Chat",
37
+ "Qwen/Qwen1.5-32B-Chat",
38
+ "Qwen/Qwen1.5-14B-Chat",
39
+ "Qwen/Qwen1.5-7B-Chat",
40
+ "Qwen/Qwen1.5-4B-Chat",
41
+ "Qwen/Qwen1.5-1.8B-Chat",
42
+ "Qwen/Qwen1.5-0.5B-Chat",
43
+ "Qwen/CodeQwen1.5-7B-Chat",
44
+ "Qwen/Qwen2.5-Math-72B-Instruct",
45
+ "Qwen/Qwen2.5-Math-7B-Instruct",
46
+ "Qwen/Qwen2.5-Coder-32B-Instruct",
47
+ "Qwen/Qwen2.5-Coder-14B-Instruct",
48
+ "Qwen/Qwen2.5-Coder-7B-Instruct",
49
+ "Qwen/Qwen2.5-Coder-3B-Instruct",
50
+ "Qwen/Qwen2.5-Coder-1.5B-Instruct",
51
+ "Qwen/Qwen2.5-Coder-0.5B-Instruct",
52
+ "Qwen/QwQ-32B-Preview",
53
+ "Qwen/Qwen2-VL-72B-Instruct",
54
+ "Qwen/Qwen2-VL-7B-Instruct",
55
+ "Qwen/Qwen2-VL-2B-Instruct",
56
+ "Qwen/Qwen2-Audio-7B-Instruct",
57
+ "Qwen/Qwen-Agent-Chat",
58
+ "Qwen/Qwen-VL-Chat",
59
  ],
60
  "DeepSeek Models": [
61
+ "deepseek-ai/deepseek-llm-67b-chat",
62
+ "deepseek-ai/deepseek-llm-7b-chat",
63
+ "deepseek-ai/deepseek-coder-33b-instruct",
64
+ "deepseek-ai/deepseek-coder-7b-instruct",
65
+ "deepseek-ai/deepseek-coder-6.7b-instruct",
66
+ "deepseek-ai/deepseek-coder-1.3b-instruct",
67
+ "deepseek-ai/DeepSeek-V2-Chat",
68
+ "deepseek-ai/DeepSeek-V2-Lite-Chat",
69
+ "deepseek-ai/deepseek-math-7b-instruct",
70
+ "deepseek-ai/deepseek-moe-16b-chat",
71
+ "deepseek-ai/deepseek-vl-7b-chat",
72
+ "deepseek-ai/deepseek-vl-1.3b-chat",
73
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
74
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B",
75
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B",
76
+ "deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
77
+ "deepseek-ai/DeepSeek-Reasoner-R1",
78
+ ],
79
  },
80
  "Image Processing": {
81
  "Image Generation": [
82
+ "black-forest-labs/FLUX.1-dev",
83
+ "black-forest-labs/FLUX.1-schnell",
84
+ "black-forest-labs/FLUX.1-pro",
85
+ "runwayml/stable-diffusion-v1-5",
86
+ "stabilityai/stable-diffusion-xl-base-1.0",
87
+ "stabilityai/stable-diffusion-3-medium-diffusers",
88
+ "stabilityai/sd-turbo",
89
+ "kandinsky-community/kandinsky-2-2-decoder",
90
+ "playgroundai/playground-v2.5-1024px-aesthetic",
91
+ "midjourney/midjourney-v6",
92
  ],
93
  "Image Editing": [
94
+ "timbrooks/instruct-pix2pix",
95
+ "runwayml/stable-diffusion-inpainting",
96
+ "stabilityai/stable-diffusion-xl-refiner-1.0",
97
+ "lllyasviel/control_v11p_sd15_inpaint",
98
+ "SG161222/RealVisXL_V4.0",
99
+ "ByteDance/SDXL-Lightning",
100
+ "segmind/SSD-1B",
101
+ "segmind/Segmind-Vega",
102
+ "playgroundai/playground-v2-1024px-aesthetic",
103
+ "stabilityai/stable-cascade",
104
  ],
105
  "Face Processing": [
106
+ "InsightFace/inswapper_128.onnx",
107
+ "deepinsight/insightface",
108
+ "TencentARC/GFPGAN",
109
+ "sczhou/CodeFormer",
110
+ "xinntao/Real-ESRGAN",
111
+ "ESRGAN/ESRGAN",
112
+ ],
113
  },
114
  "Audio Processing": {
115
  "Text-to-Speech": [
116
+ "microsoft/speecht5_tts",
117
+ "facebook/mms-tts-eng",
118
+ "facebook/mms-tts-ara",
119
+ "coqui/XTTS-v2",
120
+ "suno/bark",
121
+ "parler-tts/parler-tts-large-v1",
122
+ "microsoft/DisTTS",
123
+ "facebook/fastspeech2-en-ljspeech",
124
+ "espnet/kan-bayashi_ljspeech_vits",
125
+ "facebook/tts_transformer-en-ljspeech",
126
+ "microsoft/SpeechT5",
127
+ "Voicemod/fastspeech2-en-male1",
128
+ "facebook/mms-tts-spa",
129
+ "facebook/mms-tts-fra",
130
+ "facebook/mms-tts-deu",
131
  ],
132
  "Speech-to-Text": [
133
+ "openai/whisper-large-v3",
134
+ "openai/whisper-large-v2",
135
+ "openai/whisper-medium",
136
+ "openai/whisper-small",
137
+ "openai/whisper-base",
138
+ "openai/whisper-tiny",
139
+ "facebook/wav2vec2-large-960h",
140
+ "facebook/wav2vec2-base-960h",
141
+ "microsoft/unispeech-sat-large",
142
+ "nvidia/stt_en_conformer_ctc_large",
143
+ "speechbrain/asr-wav2vec2-commonvoice-en",
144
+ "facebook/mms-1b-all",
145
+ "facebook/seamless-m4t-v2-large",
146
+ "distil-whisper/distil-large-v3",
147
+ "distil-whisper/distil-medium.en",
148
+ ],
149
  },
150
  "Multimodal AI": {
151
  "Vision-Language": [
152
+ "microsoft/DialoGPT-large",
153
+ "microsoft/blip-image-captioning-large",
154
+ "microsoft/blip2-opt-6.7b",
155
+ "microsoft/blip2-flan-t5-xl",
156
+ "salesforce/blip-vqa-capfilt-large",
157
+ "dandelin/vilt-b32-finetuned-vqa",
158
+ "google/pix2struct-ai2d-base",
159
+ "microsoft/git-large-coco",
160
+ "microsoft/git-base-vqa",
161
+ "liuhaotian/llava-v1.6-34b",
162
+ "liuhaotian/llava-v1.6-vicuna-7b",
163
  ],
164
  "Talking Avatars": [
165
+ "microsoft/SpeechT5-TTS-Avatar",
166
+ "Wav2Lip-HD",
167
+ "First-Order-Model",
168
+ "LipSync-Expert",
169
+ "DeepFaceLive",
170
+ "FaceSwapper-Live",
171
+ "RealTime-FaceRig",
172
+ "AI-Avatar-Generator",
173
+ "TalkingHead-3D",
174
+ ],
175
  },
176
  "Arabic-English Models": [
177
+ "aubmindlab/bert-base-arabertv2",
178
+ "aubmindlab/aragpt2-base",
179
+ "aubmindlab/aragpt2-medium",
180
+ "CAMeL-Lab/bert-base-arabic-camelbert-mix",
181
+ "asafaya/bert-base-arabic",
182
+ "UBC-NLP/MARBERT",
183
+ "UBC-NLP/ARBERTv2",
184
+ "facebook/nllb-200-3.3B",
185
+ "facebook/m2m100_1.2B",
186
+ "Helsinki-NLP/opus-mt-ar-en",
187
+ "Helsinki-NLP/opus-mt-en-ar",
188
+ "microsoft/DialoGPT-medium-arabic",
189
+ ],
190
  }
191
 
192
+
193
  def init_database():
194
  """Initialize SQLite database for authentication"""
195
  db_path = Path("openmanus.db")
196
  conn = sqlite3.connect(db_path)
197
  cursor = conn.cursor()
198
+
199
  # Create users table
200
+ cursor.execute(
201
+ """
202
  CREATE TABLE IF NOT EXISTS users (
203
  id INTEGER PRIMARY KEY AUTOINCREMENT,
204
  mobile_number TEXT UNIQUE NOT NULL,
 
208
  last_login TIMESTAMP,
209
  is_active BOOLEAN DEFAULT 1
210
  )
211
+ """
212
+ )
213
+
214
  # Create sessions table
215
+ cursor.execute(
216
+ """
217
  CREATE TABLE IF NOT EXISTS sessions (
218
  id TEXT PRIMARY KEY,
219
  user_id INTEGER NOT NULL,
 
223
  user_agent TEXT,
224
  FOREIGN KEY (user_id) REFERENCES users (id)
225
  )
226
+ """
227
+ )
228
+
229
  # Create model usage table
230
+ cursor.execute(
231
+ """
232
  CREATE TABLE IF NOT EXISTS model_usage (
233
  id INTEGER PRIMARY KEY AUTOINCREMENT,
234
  user_id INTEGER,
 
240
  processing_time REAL,
241
  FOREIGN KEY (user_id) REFERENCES users (id)
242
  )
243
+ """
244
+ )
245
+
246
  conn.commit()
247
  conn.close()
248
  return True
249
 
250
+
251
  def hash_password(password):
252
  """Hash password using SHA-256"""
253
  return hashlib.sha256(password.encode()).hexdigest()
254
 
255
+
256
  def signup_user(mobile, name, password, confirm_password):
257
  """User registration with mobile number"""
258
  if not all([mobile, name, password, confirm_password]):
259
  return "❌ Please fill in all fields"
260
+
261
  if password != confirm_password:
262
  return "❌ Passwords do not match"
263
+
264
  if len(password) < 6:
265
  return "❌ Password must be at least 6 characters"
266
+
267
  # Validate mobile number
268
  if not mobile.replace("+", "").replace("-", "").replace(" ", "").isdigit():
269
  return "❌ Please enter a valid mobile number"
270
+
271
  try:
272
  conn = sqlite3.connect("openmanus.db")
273
  cursor = conn.cursor()
274
+
275
  # Check if mobile number already exists
276
  cursor.execute("SELECT id FROM users WHERE mobile_number = ?", (mobile,))
277
  if cursor.fetchone():
278
  conn.close()
279
  return "❌ Mobile number already registered"
280
+
281
  # Create new user
282
  password_hash = hash_password(password)
283
+ cursor.execute(
284
+ """
285
  INSERT INTO users (mobile_number, full_name, password_hash)
286
  VALUES (?, ?, ?)
287
+ """,
288
+ (mobile, name, password_hash),
289
+ )
290
+
291
  conn.commit()
292
  conn.close()
293
+
294
  return f"✅ Account created successfully for {name}! Welcome to OpenManus Platform."
295
+
296
  except Exception as e:
297
  return f"❌ Registration failed: {str(e)}"
298
 
299
+
300
  def login_user(mobile, password):
301
  """User authentication"""
302
  if not mobile or not password:
303
  return "❌ Please provide mobile number and password"
304
+
305
  try:
306
  conn = sqlite3.connect("openmanus.db")
307
  cursor = conn.cursor()
308
+
309
  # Verify credentials
310
  password_hash = hash_password(password)
311
+ cursor.execute(
312
+ """
313
+ SELECT id, full_name FROM users
314
  WHERE mobile_number = ? AND password_hash = ? AND is_active = 1
315
+ """,
316
+ (mobile, password_hash),
317
+ )
318
+
319
  user = cursor.fetchone()
320
  if user:
321
  # Update last login
322
+ cursor.execute(
323
+ """
324
  UPDATE users SET last_login = CURRENT_TIMESTAMP WHERE id = ?
325
+ """,
326
+ (user[0],),
327
+ )
328
  conn.commit()
329
  conn.close()
330
+
331
  return f"✅ Welcome back, {user[1]}! Login successful."
332
  else:
333
  conn.close()
334
  return "❌ Invalid mobile number or password"
335
+
336
  except Exception as e:
337
  return f"❌ Login failed: {str(e)}"
338
 
339
+
340
  def use_ai_model(model_name, input_text, user_session="guest"):
341
  """Simulate AI model usage"""
342
  if not input_text.strip():
343
  return "Please enter some text for the AI model to process."
344
+
345
  # Simulate model processing
346
  response_templates = {
347
  "text": f"🧠 {model_name} processed: '{input_text}'\n\n✨ AI Response: This is a simulated response from the {model_name} model. In production, this would connect to the actual model API.",
348
  "image": f"🖼️ {model_name} would generate/edit an image based on: '{input_text}'\n\n📸 Output: Image processing complete (simulated)",
349
  "audio": f"🎵 {model_name} audio processing for: '{input_text}'\n\n🔊 Output: Audio generated/processed (simulated)",
350
+ "multimodal": f"🤖 {model_name} multimodal processing: '{input_text}'\n\n🎯 Output: Combined AI analysis complete (simulated)",
351
  }
352
+
353
  # Determine response type based on model
354
+ if any(
355
+ x in model_name.lower()
356
+ for x in ["image", "flux", "diffusion", "face", "avatar"]
357
+ ):
358
  response_type = "image"
359
+ elif any(
360
+ x in model_name.lower()
361
+ for x in ["tts", "speech", "audio", "whisper", "wav2vec"]
362
+ ):
363
+ response_type = "audio"
364
  elif any(x in model_name.lower() for x in ["vl", "blip", "vision", "talking"]):
365
  response_type = "multimodal"
366
  else:
367
  response_type = "text"
368
+
369
  return response_templates[response_type]
370
 
371
+
372
  def get_cloudflare_status():
373
  """Get Cloudflare services status"""
374
  services = []
375
+
376
  if CLOUDFLARE_CONFIG["d1_database_id"]:
377
  services.append("✅ D1 Database Connected")
378
  else:
379
  services.append("⚙️ D1 Database (Configure CLOUDFLARE_D1_DATABASE_ID)")
380
+
381
  if CLOUDFLARE_CONFIG["r2_bucket_name"]:
382
+ services.append("✅ R2 Storage Connected")
383
  else:
384
  services.append("⚙️ R2 Storage (Configure CLOUDFLARE_R2_BUCKET_NAME)")
385
+
386
  if CLOUDFLARE_CONFIG["kv_namespace_id"]:
387
  services.append("✅ KV Cache Connected")
388
  else:
389
  services.append("⚙️ KV Cache (Configure CLOUDFLARE_KV_NAMESPACE_ID)")
390
+
391
  if CLOUDFLARE_CONFIG["durable_objects_id"]:
392
  services.append("✅ Durable Objects Connected")
393
  else:
394
  services.append("⚙️ Durable Objects (Configure CLOUDFLARE_DURABLE_OBJECTS_ID)")
395
+
396
  return "\n".join(services)
397
 
398
+
399
  # Initialize database
400
  init_database()
401
 
402
  # Create Gradio interface
403
  with gr.Blocks(
404
+ title="OpenManus - Complete AI Platform",
405
  theme=gr.themes.Soft(),
406
  css="""
407
  .container { max-width: 1400px; margin: 0 auto; }
408
  .header { text-align: center; padding: 25px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; border-radius: 15px; margin-bottom: 25px; }
409
  .section { background: white; padding: 25px; border-radius: 15px; margin: 15px 0; box-shadow: 0 4px 15px rgba(0,0,0,0.1); }
410
+ """,
411
  ) as app:
412
+
413
  # Header
414
+ gr.HTML(
415
+ """
416
  <div class="header">
417
  <h1>🤖 OpenManus - Complete AI Platform</h1>
418
  <p><strong>Mobile Authentication + 200+ AI Models + Cloudflare Services</strong></p>
419
  <p>🧠 Qwen & DeepSeek | 🖼️ Image Processing | 🎵 TTS/STT | 👤 Face Swap | 🌍 Arabic-English | ☁️ Cloud Integration</p>
420
  </div>
421
+ """
422
+ )
423
+
424
  with gr.Row():
425
  # Authentication Section
426
  with gr.Column(scale=1, elem_classes="section"):
427
  gr.Markdown("## 🔐 Authentication System")
428
+
429
  with gr.Tab("Sign Up"):
430
  gr.Markdown("### Create New Account")
431
  signup_mobile = gr.Textbox(
432
+ label="Mobile Number",
433
  placeholder="+1234567890",
434
+ info="Enter your mobile number with country code",
435
  )
436
  signup_name = gr.Textbox(
437
+ label="Full Name", placeholder="Your full name"
 
438
  )
439
  signup_password = gr.Textbox(
440
+ label="Password", type="password", info="Minimum 6 characters"
 
 
 
 
 
 
441
  )
442
+ signup_confirm = gr.Textbox(label="Confirm Password", type="password")
443
  signup_btn = gr.Button("Create Account", variant="primary")
444
  signup_result = gr.Textbox(
445
+ label="Registration Status", interactive=False, lines=2
 
 
446
  )
447
+
448
  signup_btn.click(
449
  signup_user,
450
  [signup_mobile, signup_name, signup_password, signup_confirm],
451
+ signup_result,
452
  )
453
+
454
  with gr.Tab("Login"):
455
  gr.Markdown("### Access Your Account")
456
  login_mobile = gr.Textbox(
457
+ label="Mobile Number", placeholder="+1234567890"
 
 
 
 
 
458
  )
459
+ login_password = gr.Textbox(label="Password", type="password")
460
  login_btn = gr.Button("Login", variant="primary")
461
  login_result = gr.Textbox(
462
+ label="Login Status", interactive=False, lines=2
 
 
463
  )
464
+
465
  login_btn.click(
466
+ login_user, [login_mobile, login_password], login_result
 
 
467
  )
468
+
469
+ # AI Models Section
470
  with gr.Column(scale=2, elem_classes="section"):
471
  gr.Markdown("## 🤖 AI Models Hub (200+ Models)")
472
+
473
  with gr.Tab("Text Generation"):
474
  with gr.Row():
475
  with gr.Column():
 
477
  qwen_model = gr.Dropdown(
478
  choices=AI_MODELS["Text Generation"]["Qwen Models"],
479
  label="Select Qwen Model",
480
+ value="Qwen/Qwen2.5-72B-Instruct",
481
  )
482
  qwen_input = gr.Textbox(
483
  label="Input Text",
484
  placeholder="Enter your prompt for Qwen...",
485
+ lines=3,
486
  )
487
  qwen_btn = gr.Button("Generate with Qwen")
488
  qwen_output = gr.Textbox(
489
+ label="Qwen Response", lines=5, interactive=False
 
 
490
  )
491
+ qwen_btn.click(
492
+ use_ai_model, [qwen_model, qwen_input], qwen_output
493
+ )
494
+
495
  with gr.Column():
496
  gr.Markdown("### DeepSeek Models (17 models)")
497
  deepseek_model = gr.Dropdown(
498
  choices=AI_MODELS["Text Generation"]["DeepSeek Models"],
499
+ label="Select DeepSeek Model",
500
+ value="deepseek-ai/deepseek-llm-67b-chat",
501
  )
502
  deepseek_input = gr.Textbox(
503
  label="Input Text",
504
  placeholder="Enter your prompt for DeepSeek...",
505
+ lines=3,
506
  )
507
  deepseek_btn = gr.Button("Generate with DeepSeek")
508
  deepseek_output = gr.Textbox(
509
+ label="DeepSeek Response", lines=5, interactive=False
 
 
510
  )
511
+ deepseek_btn.click(
512
+ use_ai_model,
513
+ [deepseek_model, deepseek_input],
514
+ deepseek_output,
515
+ )
516
+
517
  with gr.Tab("Image Processing"):
518
  with gr.Row():
519
  with gr.Column():
 
521
  img_gen_model = gr.Dropdown(
522
  choices=AI_MODELS["Image Processing"]["Image Generation"],
523
  label="Select Image Model",
524
+ value="black-forest-labs/FLUX.1-dev",
525
  )
526
  img_prompt = gr.Textbox(
527
  label="Image Prompt",
528
  placeholder="Describe the image you want to generate...",
529
+ lines=2,
530
  )
531
  img_gen_btn = gr.Button("Generate Image")
532
  img_gen_output = gr.Textbox(
533
+ label="Generation Status", lines=4, interactive=False
534
+ )
535
+ img_gen_btn.click(
536
+ use_ai_model, [img_gen_model, img_prompt], img_gen_output
537
  )
538
+
 
539
  with gr.Column():
540
  gr.Markdown("### Face Processing & Editing")
541
  face_model = gr.Dropdown(
542
  choices=AI_MODELS["Image Processing"]["Face Processing"],
543
  label="Select Face Model",
544
+ value="InsightFace/inswapper_128.onnx",
545
  )
546
  face_input = gr.Textbox(
547
  label="Face Processing Task",
548
  placeholder="Describe face swap or enhancement task...",
549
+ lines=2,
550
  )
551
  face_btn = gr.Button("Process Face")
552
  face_output = gr.Textbox(
553
+ label="Processing Status", lines=4, interactive=False
554
+ )
555
+ face_btn.click(
556
+ use_ai_model, [face_model, face_input], face_output
557
  )
558
+
 
559
  with gr.Tab("Audio Processing"):
560
  with gr.Row():
561
  with gr.Column():
 
563
  tts_model = gr.Dropdown(
564
  choices=AI_MODELS["Audio Processing"]["Text-to-Speech"],
565
  label="Select TTS Model",
566
+ value="microsoft/speecht5_tts",
567
  )
568
  tts_text = gr.Textbox(
569
  label="Text to Speak",
570
  placeholder="Enter text to convert to speech...",
571
+ lines=3,
572
  )
573
  tts_btn = gr.Button("Generate Speech")
574
  tts_output = gr.Textbox(
575
+ label="TTS Status", lines=4, interactive=False
 
 
576
  )
577
  tts_btn.click(use_ai_model, [tts_model, tts_text], tts_output)
578
+
579
  with gr.Column():
580
  gr.Markdown("### Speech-to-Text (15 models)")
581
  stt_model = gr.Dropdown(
582
  choices=AI_MODELS["Audio Processing"]["Speech-to-Text"],
583
  label="Select STT Model",
584
+ value="openai/whisper-large-v3",
585
  )
586
  stt_input = gr.Textbox(
587
  label="Audio Description",
588
  placeholder="Describe audio file to transcribe...",
589
+ lines=3,
590
  )
591
  stt_btn = gr.Button("Transcribe Audio")
592
  stt_output = gr.Textbox(
593
+ label="STT Status", lines=4, interactive=False
 
 
594
  )
595
  stt_btn.click(use_ai_model, [stt_model, stt_input], stt_output)
596
+
597
  with gr.Tab("Multimodal & Avatars"):
598
  with gr.Row():
599
  with gr.Column():
 
601
  vl_model = gr.Dropdown(
602
  choices=AI_MODELS["Multimodal AI"]["Vision-Language"],
603
  label="Select VL Model",
604
+ value="liuhaotian/llava-v1.6-34b",
605
  )
606
  vl_input = gr.Textbox(
607
  label="Vision-Language Task",
608
  placeholder="Describe image analysis or VQA task...",
609
+ lines=3,
610
  )
611
  vl_btn = gr.Button("Process with VL Model")
612
  vl_output = gr.Textbox(
613
+ label="VL Response", lines=4, interactive=False
 
 
614
  )
615
  vl_btn.click(use_ai_model, [vl_model, vl_input], vl_output)
616
+
617
  with gr.Column():
618
  gr.Markdown("### Talking Avatars")
619
  avatar_model = gr.Dropdown(
620
  choices=AI_MODELS["Multimodal AI"]["Talking Avatars"],
621
  label="Select Avatar Model",
622
+ value="Wav2Lip-HD",
623
  )
624
  avatar_input = gr.Textbox(
625
  label="Avatar Generation Task",
626
  placeholder="Describe talking avatar or lip-sync task...",
627
+ lines=3,
628
  )
629
  avatar_btn = gr.Button("Generate Avatar")
630
  avatar_output = gr.Textbox(
631
+ label="Avatar Status", lines=4, interactive=False
632
+ )
633
+ avatar_btn.click(
634
+ use_ai_model, [avatar_model, avatar_input], avatar_output
635
  )
636
+
 
637
  with gr.Tab("Arabic-English"):
638
  gr.Markdown("### Arabic-English Interactive Models (12 models)")
639
  arabic_model = gr.Dropdown(
640
  choices=AI_MODELS["Arabic-English Models"],
641
  label="Select Arabic-English Model",
642
+ value="aubmindlab/bert-base-arabertv2",
643
  )
644
  arabic_input = gr.Textbox(
645
  label="Text (Arabic or English)",
646
  placeholder="أدخل النص باللغة العربية أو الإنجليزية / Enter text in Arabic or English...",
647
+ lines=4,
648
  )
649
  arabic_btn = gr.Button("Process Arabic-English")
650
  arabic_output = gr.Textbox(
651
+ label="Processing Result", lines=6, interactive=False
652
+ )
653
+ arabic_btn.click(
654
+ use_ai_model, [arabic_model, arabic_input], arabic_output
655
  )
656
+
 
657
  # Services Status Section
658
  with gr.Row():
659
  with gr.Column(elem_classes="section"):
660
  gr.Markdown("## ☁️ Cloudflare Services Integration")
661
+
662
  with gr.Row():
663
  with gr.Column():
664
  gr.Markdown("### Services Status")
 
666
  label="Cloudflare Services",
667
  value=get_cloudflare_status(),
668
  lines=6,
669
+ interactive=False,
670
  )
671
  refresh_btn = gr.Button("Refresh Status")
672
  refresh_btn.click(
673
+ lambda: get_cloudflare_status(), outputs=services_status
 
674
  )
675
+
676
  with gr.Column():
677
  gr.Markdown("### Configuration")
678
+ gr.HTML(
679
+ """
680
  <div style="background: #f0f8ff; padding: 15px; border-radius: 10px;">
681
  <h4>Environment Variables:</h4>
682
  <ul>
683
  <li><code>CLOUDFLARE_API_TOKEN</code> - API authentication</li>
684
+ <li><code>CLOUDFLARE_ACCOUNT_ID</code> - Account identifier</li>
685
  <li><code>CLOUDFLARE_D1_DATABASE_ID</code> - D1 database</li>
686
  <li><code>CLOUDFLARE_R2_BUCKET_NAME</code> - R2 storage</li>
687
  <li><code>CLOUDFLARE_KV_NAMESPACE_ID</code> - KV cache</li>
688
  <li><code>CLOUDFLARE_DURABLE_OBJECTS_ID</code> - Durable objects</li>
689
  </ul>
690
  </div>
691
+ """
692
+ )
693
+
694
  # Footer Status
695
+ gr.HTML(
696
+ """
697
  <div style="background: linear-gradient(45deg, #f0f8ff 0%, #e6f3ff 100%); padding: 20px; border-radius: 15px; margin-top: 25px; text-align: center;">
698
  <h3>📊 Platform Status</h3>
699
  <div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 15px; margin: 15px 0;">
 
708
  </div>
709
  <p><em>Complete AI Platform successfully deployed on HuggingFace Spaces with Docker!</em></p>
710
  </div>
711
+ """
712
+ )
713
 
714
  if __name__ == "__main__":
715
+ app.launch(server_name="0.0.0.0", server_port=7860)