""" #App: NLP App with Streamlit Credits: Streamlit Team, Marc Skov Madsen(For Awesome-streamlit gallery) Description This is a Natural Language Processing(NLP) base Application that is useful for basic NLP tasks such as follows; + Tokenization(POS tagging) & Lemmatization(root mean) using Spacy + Named Entity Recognition(NER)/Trigger word detection using SpaCy + Sentiment Analysis using TextBlob + Document/Text Summarization using Gensim/T5 both for Bangla Extractive and English Abstructive. This is built with Streamlit Framework, an awesome framework for building ML and NLP tools. Purpose To perform basic and useful NLP tasks with Streamlit, Spacy, Textblob, and Gensim """ # Core Pkgs import os #os.system('sudo apt-get install tesseract-ocr-eng') #os.system('sudo apt-get install tesseract-ocr-ben') #os.system('wget https://github.com/tesseract-ocr/tessdata/raw/main/ben.traineddata') #os.system('gunzip ben.traineddata.gz ') #os.system('sudo mv -v ben.traineddata /usr/local/share/tessdata/') #os.system('pip install -q pytesseract') import streamlit as st import torch from transformers import AutoTokenizer, AutoModelWithLMHead, GPT2LMHeadModel import docx2txt from PIL import Image from PyPDF2 import PdfFileReader import pdfplumber # NLP Pkgs from textblob import TextBlob import spacy from gensim.summarization import summarize import requests import cv2 import numpy as np import pytesseract #pytesseract.pytesseract.tesseract_cmd = r"./Tesseract-OCR/tesseract.exe" from PIL import Image def read_pdf(file): pdfReader = PdfFileReader(file) count = pdfReader.numPages all_page_text = "" for i in range(count): page = pdfReader.getPage(i) all_page_text += page.extractText() return all_page_text #def read_pdf_with_pdfplumber(file): # with pdfplumber.open(file) as pdf: # page = pdf.pages[0] # return page.extract_text() # Title if st.button("REFRESH"): st.experimental_rerun() st.title("Streamlit NLP APP") @st.experimental_singleton def text_analyzer(my_text): nlp = spacy.load('en_core_web_sm') docx = nlp(my_text) # tokens = [ token.text for token in docx] allData = [('"Token":{},\n"Lemma":{}'.format(token.text,token.lemma_))for token in docx ] return allData @st.experimental_singleton def load_models(): tokenizer = AutoTokenizer.from_pretrained('gpt2-large') model = GPT2LMHeadModel.from_pretrained('gpt2-large') return tokenizer, model # Function For Extracting Entities @st.experimental_singleton def entity_analyzer(my_text): nlp = spacy.load('en_core_web_sm') docx = nlp(my_text) tokens = [ token.text for token in docx] entities = [(entity.text,entity.label_)for entity in docx.ents] allData = ['"Token":{},\n"Entities":{}'.format(tokens,entities)] return allData def main(): """ NLP Based Application with Streamlit """ st.markdown(""" #### Description ##This is a Natural Language Processing(NLP) base Application that is useful for basic NLP tasks such as follows: + Tokenization(POS tagging) & Lemmatization(root mean) using Spacy + Named Entity Recognition(NER)/Trigger word detection using SpaCy + Sentiment Analysis using TextBlob + Document/Text Summarization using Gensim/T5 both for Bangla Extractive and English Abstractive. """) def change_photo_state(): st.session_state["photo"]="done" st.subheader("Please, feed your image/text, features/services will appear automatically!") message = st.text_input("Type your text here!") camera_photo = st.camera_input("Take a photo, Containing English or Bangla texts", on_change=change_photo_state) uploaded_photo = st.file_uploader("Upload Image, Containing English or Bangla texts",type=['jpg','png','jpeg','pdf'], on_change=change_photo_state) if "photo" not in st.session_state: st.session_state["photo"]="not done" if st.session_state["photo"]=="done" or message: file_details = {"Filename":uploaded_photo_photo.name,"FileType":uploaded_photo_photo.type,"FileSize":uploaded_photo_photo.size} st.write(file_details) if uploaded_photo and uploaded_photo.type == "application/pdf": text = read_pdf(docx_file) text = pytesseract.image_to_string(img, lang="ben") if st.checkbox("Mark to see Bangla Image's Text") else pytesseract.image_to_string(img) st.success(text) if uploaded_photo and uploaded_photo.type=="application/image": img = Image.open(uploaded_photo) img = img.save("img.png") img = cv2.imread("img.png") text = pytesseract.image_to_string(img, lang="ben") if st.checkbox("Mark to see Bangla Image's Text") else pytesseract.image_to_string(img) st.success(text) elif camera_photo: img = Image.open(camera_photo) img = img.save("img.png") img = cv2.imread("img.png") text = pytesseract.image_to_string(img, lang="ben") if st.checkbox("Mark to see Bangla Image's Text") else pytesseract.image_to_string(img) st.success(text) elif uploaded_photo==None and camera_photo==None: #our_image=load_image("image.jpg") #img = cv2.imread("scholarly_text.jpg") text = message if st.checkbox("Show Named Entities English/Bangla"): entity_result = entity_analyzer(text) st.json(entity_result) if st.checkbox("Show Sentiment Analysis for English"): blob = TextBlob(text) result_sentiment = blob.sentiment st.success(result_sentiment) if st.checkbox("Spell Corrections for English"): st.success(TextBlob(text).correct()) if st.checkbox("Text Generation"): ok = st.button("Generate") if ok: tokenizer, model = load_models() input_ids = tokenizer(text, return_tensors='pt').input_ids st.text("Using Hugging Face Transformer, Contrastive Search ..") output = model.generate(input_ids, max_length=128) st.success(tokenizer.decode(output[0], skip_special_tokens=True)) if st.checkbox("Mark here, Text Summarization for English or Bangla!"): #st.subheader("Summarize Your Text for English and Bangla Texts!") #message = st.text_area("Enter the Text","Type please ..") #st.text("Using Gensim Summarizer ..") #st.success(mess) summary_result = summarize(text) st.success(summary_result) if st.checkbox("Mark to better English Text Summarization!"): #st.title("Summarize Your Text for English only!") tokenizer = AutoTokenizer.from_pretrained('t5-base') model = AutoModelWithLMHead.from_pretrained('t5-base', return_dict=True) #st.text("Using Google T5 Transformer ..") inputs = tokenizer.encode("summarize: " + text, return_tensors='pt', max_length=512, truncation=True) summary_ids = model.generate(inputs, max_length=150, min_length=80, length_penalty=5., num_beams=2) summary = tokenizer.decode(summary_ids[0]) st.success(summary) st.sidebar.subheader("About App") st.sidebar.markdown("By [Soumen Sarker](https://soumen-sarker-personal-website.streamlitapp.com/)") if __name__ == '__main__': main()