File size: 1,354 Bytes
016c38c
 
 
 
 
 
 
 
 
 
f9d9653
016c38c
f9d9653
016c38c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

# use this command to install open cv2
# pip install opencv-python

# use this command to install PIL
# pip install Pillow

import cv2
from PIL import Image

def mark_region(im):
    
    #im = cv2.imread(image_path)

    gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
    blur = cv2.GaussianBlur(gray, (9,9), 0)
    thresh = cv2.adaptiveThreshold(blur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV,11,30)

    # Dilate to combine adjacent text contours
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9,9))
    dilate = cv2.dilate(thresh, kernel, iterations=4)

    # Find contours, highlight text areas, and extract ROIs
    cnts = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    cnts = cnts[0] if len(cnts) == 2 else cnts[1]

    line_items_coordinates = []
    for c in cnts:
        area = cv2.contourArea(c)
        x,y,w,h = cv2.boundingRect(c)

        if y >= 600 and x <= 1000:
            if area > 10000:
                image = cv2.rectangle(im, (x,y), (2200, y+h), color=(255,0,255), thickness=3)
                line_items_coordinates.append([(x,y), (2200, y+h)])

        if y >= 2400 and x<= 2000:
            image = cv2.rectangle(im, (x,y), (2200, y+h), color=(255,0,255), thickness=3)
            line_items_coordinates.append([(x,y), (2200, y+h)])


    return image, line_items_coordinates