File size: 1,354 Bytes
016c38c f9d9653 016c38c f9d9653 016c38c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
# use this command to install open cv2
# pip install opencv-python
# use this command to install PIL
# pip install Pillow
import cv2
from PIL import Image
def mark_region(im):
#im = cv2.imread(image_path)
gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (9,9), 0)
thresh = cv2.adaptiveThreshold(blur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV,11,30)
# Dilate to combine adjacent text contours
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9,9))
dilate = cv2.dilate(thresh, kernel, iterations=4)
# Find contours, highlight text areas, and extract ROIs
cnts = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
line_items_coordinates = []
for c in cnts:
area = cv2.contourArea(c)
x,y,w,h = cv2.boundingRect(c)
if y >= 600 and x <= 1000:
if area > 10000:
image = cv2.rectangle(im, (x,y), (2200, y+h), color=(255,0,255), thickness=3)
line_items_coordinates.append([(x,y), (2200, y+h)])
if y >= 2400 and x<= 2000:
image = cv2.rectangle(im, (x,y), (2200, y+h), color=(255,0,255), thickness=3)
line_items_coordinates.append([(x,y), (2200, y+h)])
return image, line_items_coordinates |