import gradio as gr import torch from diffusers import AudioLDMPipeline from share_btn import community_icon_html, loading_icon_html, share_js from transformers import AutoProcessor, ClapModel # make Space compatible with CPU duplicates if torch.cuda.is_available(): device = "cuda" torch_dtype = torch.float16 else: device = "cpu" torch_dtype = torch.float32 # load the diffusers pipeline repo_id = "cvssp/audioldm-m-full" pipe = AudioLDMPipeline.from_pretrained(repo_id, torch_dtype=torch_dtype).to(device) pipe.unet = torch.compile(pipe.unet) # CLAP model (only required for automatic scoring) clap_model = ClapModel.from_pretrained("sanchit-gandhi/clap-htsat-unfused-m-full").to(device) processor = AutoProcessor.from_pretrained("sanchit-gandhi/clap-htsat-unfused-m-full") generator = torch.Generator(device) def text2audio(text, negative_prompt, duration, guidance_scale, random_seed, n_candidates): if text is None: raise gr.Error("Please provide a text input.") waveforms = pipe( text, audio_length_in_s=duration, guidance_scale=guidance_scale, negative_prompt=negative_prompt, num_waveforms_per_prompt=n_candidates if n_candidates else 1, generator=generator.manual_seed(int(random_seed)), )["audios"] if waveforms.shape[0] > 1: waveform = score_waveforms(text, waveforms) else: waveform = waveforms[0] return gr.make_waveform((16000, waveform), bg_image="bg.png") def score_waveforms(text, waveforms): inputs = processor(text=text, audios=list(waveforms), return_tensors="pt", padding=True) inputs = {key: inputs[key].to(device) for key in inputs} with torch.no_grad(): logits_per_text = clap_model(**inputs).logits_per_text # this is the audio-text similarity score probs = logits_per_text.softmax(dim=-1) # we can take the softmax to get the label probabilities most_probable = torch.argmax(probs) # and now select the most likely audio waveform waveform = waveforms[most_probable] return waveform css = """ a { color: inherit; text-decoration: underline; } .gradio-container { font-family: 'IBM Plex Sans', sans-serif; } .gr-button { color: white; border-color: #000000; background: #000000; } input[type='range'] { accent-color: #000000; } .dark input[type='range'] { accent-color: #dfdfdf; } .container { max-width: 730px; margin: auto; padding-top: 1.5rem; } #gallery { min-height: 22rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; border-bottom-right-radius: .5rem !important; border-bottom-left-radius: .5rem !important; } #gallery>div>.h-full { min-height: 20rem; } .details:hover { text-decoration: underline; } .gr-button { white-space: nowrap; } .gr-button:focus { border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1; --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); --tw-ring-opacity: .5; } #advanced-btn { font-size: .7rem !important; line-height: 19px; margin-top: 12px; margin-bottom: 12px; padding: 2px 8px; border-radius: 14px !important; } #advanced-options { margin-bottom: 20px; } .footer { margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } .acknowledgments h4{ margin: 1.25em 0 .25em 0; font-weight: bold; font-size: 115%; } #container-advanced-btns{ display: flex; flex-wrap: wrap; justify-content: space-between; align-items: center; } .animate-spin { animation: spin 1s linear infinite; } @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; margin-top: 10px; margin-left: auto; } #share-btn { all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0; } #share-btn * { all: unset; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } .gr-form{ flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0; } #prompt-container{ gap: 0; } #generated_id{ min-height: 700px } #setting_id{ margin-bottom: 12px; text-align: center; font-weight: 900; } """ iface = gr.Blocks(css=css) with iface: gr.HTML( """
Essential Tricks for Enhancing the Quality of Your Generated Audio
1. Try to use more adjectives to describe your sound. For example: "A man is speaking clearly and slowly in a large room" is better than "A man is speaking". This can make sure AudioLDM understands what you want.
2. Try to use different random seeds, which can affect the generation quality significantly sometimes.
3. It's better to use general terms like 'man' or 'woman' instead of specific names for individuals or abstract objects that humans may not be familiar with, such as 'mummy'.
4. Using a negative prompt to not guide the diffusion process can improve the audio quality significantly. Try using negative prompts like 'low quality'.
We build the model with data from AudioSet, Freesound and BBC Sound Effect library. We share this demo based on the UK copyright exception of data for academic research.
This demo is strictly for research demo purpose only. For commercial use please contact us.
iface.queue(max_size=10).launch(debug=True)