import os import cv2 import numpy as np import streamlit as st import matplotlib.pyplot as plt from shapely.geometry import Polygon, box as shapely_box import subprocess # ... (previous functions remain unchanged) def extract_class_0_coordinates(filename): class_0_coordinates = [] current_class = None with open(filename, 'r') as file: for line in file: parts = line.strip().split() if len(parts) == 0: continue if parts[0] == '0': coordinates = [float(x) for x in parts[1:]] class_0_coordinates.extend(coordinates) return class_0_coordinates def run_yolo_models1(img): # Run YOLOv9 segmentation os.system(f"python segment/predict.py --source {img} --img 640 --device cpu --weights models/segment/best-2.pt --name yolov9_c_640_detect --exist-ok --save-txt") # Run YOLOv9 detection os.system(f"python detect.py --source {img} --img 640 --device cpu --weights models/detect/yolov9-s-converted.pt --name yolov9_c_640_detect --exist-ok --save-txt") def parse_yolo_box(box_string): """Parse a YOLO format bounding box string.""" values = list(map(float, box_string.split())) if len(values) < 5: raise ValueError(f"Expected at least 5 values, got {len(values)}") return values[0], values[1], values[2], values[3], values[4] def read_yolo_boxes(file_path): """Read YOLO format bounding boxes from a file.""" with open(file_path, 'r') as f: return [parse_yolo_box(line.strip()) for line in f if line.strip()] def yolo_to_pixel_coord(x, y, img_width, img_height): """Convert a single YOLO coordinate to pixel coordinate.""" return int(x * img_width), int(y * img_height) def yolo_to_pixel_coords(x_center, y_center, width, height, img_width, img_height): """Convert YOLO format coordinates to pixel coordinates.""" x1 = int((x_center - width / 2) * img_width) y1 = int((y_center - height / 2) * img_height) x2 = int((x_center + width / 2) * img_width) y2 = int((y_center + height / 2) * img_height) return x1, y1, x2, y2 def box_segment_relationship(yolo_box, segment, img_width, img_height, threshold): """Check the relationship between a bounding box and a segmented area.""" class_id, x_center, y_center, width, height = yolo_box x1, y1, x2, y2 = yolo_to_pixel_coords(x_center, y_center, width, height, img_width, img_height) pixel_segment = convert_segment_to_pixel(segment, img_width, img_height) segment_polygon = Polygon(zip(pixel_segment[::2], pixel_segment[1::2])) box_polygon = shapely_box(x1, y1, x2, y2) if box_polygon.intersects(segment_polygon): return "intersecting" elif box_polygon.distance(segment_polygon) <= threshold: return "obstructed" else: return "not touching" def convert_segment_to_pixel(segment, img_width, img_height): """Convert segment coordinates from YOLO format to pixel coordinates.""" pixel_segment = [] for i in range(0, len(segment), 2): x, y = yolo_to_pixel_coord(segment[i], segment[i+1], img_width, img_height) pixel_segment.extend([x, y]) return pixel_segment def plot_boxes_and_segment(image, yolo_boxes, segment, img_width, img_height, threshold): """Plot the image with intersecting boxes, obstructed boxes, and segment.""" fig, ax = plt.subplots(figsize=(12, 8)) ax.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) pixel_segment = convert_segment_to_pixel(segment, img_width, img_height) ax.plot(pixel_segment[::2] + [pixel_segment[0]], pixel_segment[1::2] + [pixel_segment[1]], 'g-', linewidth=2, label='Rail Zone') colors = {'intersecting': 'r', 'obstructed': 'y', 'not touching': 'b'} labels = {'intersecting': 'Intersecting Box', 'obstructed': 'Obstructed Box', 'not touching': 'Non-interacting Box'} for yolo_box in yolo_boxes: class_id, x_center, y_center, width, height = yolo_box x1, y1, x2, y2 = yolo_to_pixel_coords(x_center, y_center, width, height, img_width, img_height) relationship = box_segment_relationship(yolo_box, segment, img_width, img_height, threshold) color = colors[relationship] label = labels[relationship] ax.add_patch(plt.Rectangle((x1, y1), x2-x1, y2-y1, fill=False, edgecolor=color, linewidth=2, label=label)) ax.legend() ax.axis('off') plt.tight_layout() return fig def main(): st.title("YOLO Analysis App") uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png"]) if uploaded_file is not None: image = cv2.imdecode(np.fromstring(uploaded_file.read(), np.uint8), 1) st.image(image, caption='Uploaded Image', use_column_width=True) if st.button('Run Analysis'): with st.spinner("Running detection..."): img_height, img_width = image.shape[:2] # Save the uploaded image temporarily temp_image_path = "temp_image.jpg" cv2.imwrite(temp_image_path, image) # Run YOLO models run_yolo_models1(temp_image_path) label_path = 'runs/predict-seg/yolov9_c_640_detect/labels/temp_image.txt' label_path2 = 'runs/detect/yolov9_c_640_detect/labels/temp_image.txt' segment = extract_class_0_coordinates(label_path) yolo_boxes = read_yolo_boxes(label_path2) threshold = 10 # Set threshold (in pixels) fig = plot_boxes_and_segment(image, yolo_boxes, segment, img_width, img_height, threshold) st.pyplot(fig) st.subheader("Analysis Results:") for yolo_box in yolo_boxes: result = box_segment_relationship(yolo_box, segment, img_width, img_height, threshold) st.write(f"Box {yolo_box} is {result} the segment.") # Clean up temporary files os.remove(temp_image_path) os.remove(label_path) os.remove(label_path2) if __name__ == "__main__": main()