import os # Disable OpenMP os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' os.environ['OMP_NUM_THREADS'] = '1' os.environ['OPENBLAS_NUM_THREADS'] = '1' os.environ['MKL_NUM_THREADS'] = '1' os.environ['VECLIB_MAXIMUM_THREADS'] = '1' os.environ['NUMEXPR_NUM_THREADS'] = '1' import streamlit as st import torch import numpy as np import pandas as pd import matplotlib.pyplot as plt import shap from sklearn.preprocessing import MinMaxScaler import plotly.graph_objects as go import io from matplotlib.figure import Figure # Set page config st.set_page_config( page_title="Waste Properties Predictor", page_icon="🔄", layout="wide" ) # Custom CSS to improve the app's appearance st.markdown(""" """, unsafe_allow_html=True) # Load the trained model and recreate the architecture for both friction and cohesion class Net(torch.nn.Module): def __init__(self, input_size): super(Net, self).__init__() self.fc1 = torch.nn.Linear(input_size, 64) self.fc2 = torch.nn.Linear(64, 1000) self.fc3 = torch.nn.Linear(1000, 200) self.fc4 = torch.nn.Linear(200, 8) self.fc5 = torch.nn.Linear(8, 1) self.dropout = torch.nn.Dropout(0.2) # Initialize weights self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, torch.nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: module.bias.data.zero_() def forward(self, x): x = torch.nn.functional.relu(self.fc1(x)) x = self.dropout(x) x = torch.nn.functional.relu(self.fc2(x)) x = self.dropout(x) x = torch.nn.functional.relu(self.fc3(x)) x = self.dropout(x) x = torch.nn.functional.relu(self.fc4(x)) x = self.dropout(x) x = self.fc5(x) return x @st.cache_resource def load_model_and_data(): # Set device and random seeds np.random.seed(32) torch.manual_seed(42) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load data data = pd.read_excel("Data_syw.xlsx") X = data.iloc[:, list(range(1, 17)) + list(range(21, 23))] # Friction data y_friction = data.iloc[:, 28].values correlation_with_friction = abs(X.corrwith(pd.Series(y_friction))) selected_features_friction = correlation_with_friction[correlation_with_friction > 0.1].index X_friction = X[selected_features_friction] # Cohesion data y_cohesion = data.iloc[:, 25].values correlation_with_cohesion = abs(X.corrwith(pd.Series(y_cohesion))) selected_features_cohesion = correlation_with_cohesion[correlation_with_cohesion > 0.1].index X_cohesion = X[selected_features_cohesion] # Initialize and fit scalers for friction scaler_X_friction = MinMaxScaler() scaler_y_friction = MinMaxScaler() scaler_X_friction.fit(X_friction) scaler_y_friction.fit(y_friction.reshape(-1, 1)) # Initialize and fit scalers for cohesion scaler_X_cohesion = MinMaxScaler() scaler_y_cohesion = MinMaxScaler() scaler_X_cohesion.fit(X_cohesion) scaler_y_cohesion.fit(y_cohesion.reshape(-1, 1)) # Load models friction_model = Net(input_size=len(selected_features_friction)).to(device) friction_model.load_state_dict(torch.load('friction_model.pt')) friction_model.eval() cohesion_model = Net(input_size=len(selected_features_cohesion)).to(device) cohesion_model.load_state_dict(torch.load('cohesion_model.pt')) cohesion_model.eval() return (friction_model, X_friction.columns, scaler_X_friction, scaler_y_friction, cohesion_model, X_cohesion.columns, scaler_X_cohesion, scaler_y_cohesion, device, X_friction, X_cohesion) def predict_friction(input_values, model, scaler_X, scaler_y, device): # Scale input values input_scaled = scaler_X.transform(input_values) input_tensor = torch.FloatTensor(input_scaled).to(device) # Make prediction with torch.no_grad(): prediction_scaled = model(input_tensor) prediction = scaler_y.inverse_transform(prediction_scaled.cpu().numpy().reshape(-1, 1)) return prediction[0][0] def predict_cohesion(input_values, model, scaler_X, scaler_y, device): # Scale input values input_scaled = scaler_X.transform(input_values) input_tensor = torch.FloatTensor(input_scaled).to(device) # Make prediction with torch.no_grad(): prediction_scaled = model(input_tensor) prediction = scaler_y.inverse_transform(prediction_scaled.cpu().numpy().reshape(-1, 1)) return prediction[0][0] def calculate_shap_values(input_values, model, X, scaler_X, scaler_y, device): def model_predict(X): X_scaled = scaler_X.transform(X) X_tensor = torch.FloatTensor(X_scaled).to(device) with torch.no_grad(): scaled_pred = model(X_tensor).cpu().numpy() return scaler_y.inverse_transform(scaled_pred.reshape(-1, 1)).flatten() try: # Set random seed for reproducibility np.random.seed(42) # Use a fixed background dataset # Take a sample size that's at most the size of the dataset n_samples = min(50, len(X)) background_indices = np.random.choice(len(X), size=n_samples, replace=False) background = X.iloc[background_indices].values # Create explainer with more samples for stability explainer = shap.KernelExplainer(model_predict, background) shap_values = explainer.shap_values(input_values.values, nsamples=200) # Reduced from 500 to 200 if isinstance(shap_values, list): shap_values = np.array(shap_values[0]) return shap_values[0], explainer.expected_value except Exception as e: st.error(f"Error calculating SHAP values: {str(e)}") return np.zeros(len(input_values.columns)), 0.0 @st.cache_resource def create_background_data(X, n_samples=50): # Changed from 100 to 50 """Create and cache background data for SHAP calculations""" np.random.seed(42) # Ensure n_samples is not larger than dataset n_samples = min(n_samples, len(X)) background_indices = np.random.choice(len(X), size=n_samples, replace=False) return X.iloc[background_indices].values def create_waterfall_plot(shap_values, feature_names, base_value, input_data, title): # Create SHAP explanation object explanation = shap.Explanation( values=shap_values, base_values=base_value, data=input_data, feature_names=list(feature_names) ) # Create figure fig = plt.figure(figsize=(12, 8)) shap.plots.waterfall(explanation, show=False) plt.title(f'{title} - Local SHAP Value Contributions') plt.tight_layout() # Save plot to a buffer buf = io.BytesIO() plt.savefig(buf, format='png', bbox_inches='tight', dpi=300) plt.close(fig) buf.seek(0) return buf def main(): st.title("🔄 Waste Properties Predictor") st.write("This app predicts both friction angle and cohesion based on waste composition and characteristics.") try: # Load models and data (friction_model, friction_features, scaler_X_friction, scaler_y_friction, cohesion_model, cohesion_features, scaler_X_cohesion, scaler_y_cohesion, device, X_friction, X_cohesion) = load_model_and_data() # Create and cache background data for SHAP calculations # No need to store these since they're not used # friction_background = create_background_data(X_friction) # cohesion_background = create_background_data(X_cohesion) # Combine all unique features all_features = sorted(list(set(friction_features) | set(cohesion_features))) st.header("Input Parameters") # Add file upload option uploaded_file = st.file_uploader("Upload Excel file with input values", type=['xlsx', 'xls']) # Initialize input values from the data file input_values = {} # Load default values from Data_syw.xlsx default_data = pd.read_excel("Data_syw.xlsx") if len(default_data) > 0: for feature in all_features: if feature in default_data.columns: input_values[feature] = float(default_data[feature].iloc[0]) # Override with uploaded file if provided if uploaded_file is not None: try: # Read the uploaded file df = pd.read_excel(uploaded_file) if len(df) > 0: # Use the first row of the uploaded file for feature in all_features: if feature in df.columns: input_values[feature] = float(df[feature].iloc[0]) except Exception as e: st.error(f"Error reading file: {str(e)}") st.write("Enter the waste composition and characteristics below to predict both friction angle and cohesion.") # Create two columns for input col1, col2 = st.columns(2) # Create input fields for each feature for i, feature in enumerate(all_features): with col1 if i < len(all_features)//2 else col2: # Get min and max values considering both friction and cohesion datasets if feature in X_friction.columns and feature in X_cohesion.columns: min_val = min(float(X_friction[feature].min()), float(X_cohesion[feature].min())) max_val = max(float(X_friction[feature].max()), float(X_cohesion[feature].max())) elif feature in X_friction.columns: min_val = float(X_friction[feature].min()) max_val = float(X_friction[feature].max()) else: min_val = float(X_cohesion[feature].min()) max_val = float(X_cohesion[feature].max()) # Use the value from input_values if available, otherwise use 0 default_value = input_values.get(feature, 0.0) input_values[feature] = st.number_input( f"{feature}", min_value=min_val, max_value=max_val, value=default_value, help=f"Range: {min_val:.2f} to {max_val:.2f}" ) # Create DataFrames for both predictions friction_input_df = pd.DataFrame([[input_values.get(feature, 0) for feature in friction_features]], columns=friction_features) cohesion_input_df = pd.DataFrame([[input_values.get(feature, 0) for feature in cohesion_features]], columns=cohesion_features) if st.button("Predict Properties"): with st.spinner("Calculating predictions and SHAP values..."): # Make predictions friction_prediction = predict_friction(friction_input_df, friction_model, scaler_X_friction, scaler_y_friction, device) cohesion_prediction = predict_cohesion(cohesion_input_df, cohesion_model, scaler_X_cohesion, scaler_y_cohesion, device) # Set random seed before SHAP calculations np.random.seed(42) torch.manual_seed(42) if torch.cuda.is_available(): torch.cuda.manual_seed(42) # Calculate SHAP values using cached background data friction_shap_values, friction_base_value = calculate_shap_values(friction_input_df, friction_model, X_friction, scaler_X_friction, scaler_y_friction, device) cohesion_shap_values, cohesion_base_value = calculate_shap_values(cohesion_input_df, cohesion_model, X_cohesion, scaler_X_cohesion, scaler_y_cohesion, device) # Display results st.header("Prediction Results") col1, col2 = st.columns(2) with col1: st.metric("Friction Angle", f"{friction_prediction:.2f}°") with col2: st.metric("Cohesion", f"{cohesion_prediction:.2f} kPa") # Create and display waterfall plots col1, col2 = st.columns(2) with col1: st.subheader("Friction Angle SHAP Analysis") friction_waterfall_plot = create_waterfall_plot( shap_values=friction_shap_values, feature_names=friction_features, base_value=friction_base_value, input_data=friction_input_df.values[0], title="Friction Angle" ) st.image(friction_waterfall_plot) with col2: st.subheader("Cohesion SHAP Analysis") cohesion_waterfall_plot = create_waterfall_plot( shap_values=cohesion_shap_values, feature_names=cohesion_features, base_value=cohesion_base_value, input_data=cohesion_input_df.values[0], title="Cohesion" ) st.image(cohesion_waterfall_plot) except Exception as e: st.error(f"An error occurred: {str(e)}") st.info("Please try refreshing the page. If the error persists, contact support.") if __name__ == "__main__": main()