from datasets import load_dataset import numpy as np from sklearn.svm import SVC from tqdm.notebook import tqdm from sklearn.preprocessing import StandardScaler from sklearn.metrics import classification_report import nltk from nltk.corpus import stopwords from nltk import word_tokenize from nltk import pos_tag import pickle import time from nltk.corpus import names, gazetteers from sklearn.model_selection import KFold from itertools import chain from sklearn.metrics import precision_score, recall_score, fbeta_score, confusion_matrix import matplotlib.pyplot as plt import seaborn as sns nltk.download('stopwords') stopwords = stopwords.words('english') pos_tags = [ 'CC', 'CD', 'DT', 'EX', 'FW', 'IN', 'JJ', 'JJR', 'JJS', 'LS', 'MD', 'NN', 'NNP', 'NNPS', 'NNS', 'NN|SYM', 'PDT', 'POS', 'PRP', 'PRP$', 'RB', 'RBR', 'RBS', 'RP', 'SYM', 'TO', 'UH', 'VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ', 'WDT', 'WP', 'WP$', 'WRB' ] def feature_vector(word, prev_word_pos_tag, next_word_pos_tag, current_word_pos_tag): vec = np.zeros(116).astype('float32') if(word.istitle()): vec[0] = 1 if word.lower() in stopwords: vec[1] = 1 if(word.isupper()): vec[2] = 1 vec[3] = len(word) vec[4] = word.isdigit() if prev_word_pos_tag!=-1: vec[5+prev_word_pos_tag] = 1 if next_word_pos_tag!=-1: vec[42+next_word_pos_tag] = 1 if current_word_pos_tag!=-1: vec[79+current_word_pos_tag] = 1 return vec def feature_vector2(word, prev_word_pos_tag, next_word_pos_tag, current_word_pos_tag): vec = np.zeros(9).astype('float32') if(word.istitle()): vec[0] = 1 if word.lower() in stopwords: vec[1] = 1 if(word.isupper()): vec[2] = 1 vec[3] = len(word) vec[4] = word.isdigit() # idx : -11, 0...36 # if prev_word_pos_tag!=-11: # vec[5+prev_word_pos_tag] = 1 # if next_word_pos_tag!=-11: # vec[42+next_word_pos_tag] = 1 # if current_word_pos_tag!=-11: # vec[79+current_word_pos_tag] = 1 vec[5] = 1 if word in places else 0 vec[6] = 1 if word in people else 0 vec[7] = 1 if word in countries else 0 vec[8] = 1 if word in nationalities else 0 return vec # This function is used to make dataset with features and target label def create_data(data): x_train = [] y_train = [] for x in data: for y in range(len(x['tokens'])): prev_pos = -1 if y==0 or x['pos_tags'][y-1]<10 else x['pos_tags'][y-1] next_pos = -1 if y==len(x['tokens'])-1 or x['pos_tags'][y+1]<10 else x['pos_tags'][y+1] current_pos = -1 if x['pos_tags'][y]<10 else x['pos_tags'][y] wordVec = feature_vector(x['tokens'][y], prev_pos-10, next_pos-10, current_pos-10) x_train.append(wordVec) y_train.append(1 if x['ner_tags'][y]!=0 else 0) return x_train, y_train def evaluate_overall_metrics(predictions, folds): precision, recall, f0_5_score, f1_score, f2_score = 0, 0, 0, 0, 0 for i, (test_label_flat, y_pred_flat) in enumerate(predictions): # test_label_flat = list(chain.from_iterable(test_label)) # y_pred_flat = list(chain.from_iterable(y_pred)) # Calculate scores f0_5_score += fbeta_score(test_label_flat, y_pred_flat, beta=0.5, average='weighted') f1_score += fbeta_score(test_label_flat, y_pred_flat, beta=1, average='weighted') f2_score += fbeta_score(test_label_flat, y_pred_flat, beta=2, average='weighted') precision += precision_score(test_label_flat, y_pred_flat, average='weighted') recall += recall_score(test_label_flat, y_pred_flat, average='weighted') # Averaging across folds f0_5_score /= folds f1_score /= folds f2_score /= folds precision /= folds recall /= folds print(f'Overall Metrics:') print(f'Precision : {precision:.3f}') print(f'Recall : {recall:.3f}') print(f'F0.5 Score : {f0_5_score:.3f}') print(f'F1 Score : {f1_score:.3f}') print(f'F2 Score : {f2_score:.3f}\n') def evaluate_per_pos_metrics(predictions, labels): combined_true = [] combined_pred = [] # Flatten the list of lists structure for test_label, y_pred in predictions: # for sentence_labels, sentence_preds in zip(test_label, y_pred): combined_true.extend(test_label) combined_pred.extend(y_pred) for tag in labels: true_binary = [1 if t == tag else 0 for t in combined_true] pred_binary = [1 if p == tag else 0 for p in combined_pred] # Calculate metrics for the tag precision = precision_score(true_binary, pred_binary, average='binary', zero_division=0) recall = recall_score(true_binary, pred_binary, average='binary', zero_division=0) f1_score = fbeta_score(true_binary, pred_binary, beta=1, average='binary', zero_division=0) print(f"Metrics for {tag}:") print(f'Precision : {precision:.3f}') print(f'Recall : {recall:.3f}') print(f'F1 Score : {f1_score:.3f}\n') def plot_confusion_matrix(predictions, labels, folds): matrix = None for i, (test_label_flat, y_pred_flat) in enumerate(predictions): # test_label_flat = list(chain.from_iterable(test_label)) # y_pred_flat = list(chain.from_iterable(y_pred)) # Compute confusion matrix for this fold cm = confusion_matrix(test_label_flat, y_pred_flat, labels=labels) if i == 0: matrix = cm else: matrix += cm matrix = matrix.astype('float') matrix = matrix / folds matrix = matrix / np.sum(matrix, axis=1, keepdims=True) # Normalize plt.figure(figsize=(10, 8)) sns.heatmap(matrix, annot=True, fmt=".2f", cmap='Blues', xticklabels=labels, yticklabels=labels) plt.xlabel('Predicted') plt.ylabel('Actual') plt.title('Normalized Confusion Matrix for NER') plt.show() if __name__ == "__main__": data = load_dataset("conll2003", trust_remote_code=True) d_train = data['train'] d_validation = data['validation'] d_test = data['test'] nltk.download('gazetteers') places=set(gazetteers.words()) people=set(names.words()) countries=set(gazetteers.words('countries.txt')) nationalities=set(gazetteers.words('nationalities.txt')) x_train, y_train = create_data(d_train) x_val, y_val = create_data(d_validation) x_test, y_test = create_data(d_test) all_X_train = np.concatenate((x_train, x_val, x_test)) all_y_train = np.concatenate((y_train, y_val, y_test)) #K-Fold num_fold = 5 kf = KFold(n_splits=num_fold, random_state=42, shuffle=True) indices = np.arange(len(all_X_train)) predictions = [] all_models = [] for i, (train_index, test_index) in enumerate(kf.split(indices)): print(f"Fold {i} Train Length: {len(train_index)} Test Length: {len(test_index)}") # all_folds.append((train_index, test_index))# Standardize the features such that all features contribute equally to the distance metric computation of the SVM X_train = all_X_train[train_index] y_train = all_y_train[train_index] X_test = all_X_train[test_index] y_test = all_y_train[test_index] # scaler = StandardScaler() # Fit only on the training data (i.e. compute mean and std) # X_train = scaler.fit_transform(X_train) # Use the train data fit values to scale val and test # X_train = scaler.transform(X_train) # X_val = scaler.transform(X_val) # X_test = scaler.transform(X_test) model = SVC(random_state = 42, verbose = True) model.fit(X_train, y_train) y_pred_val = model.predict(X_test) print("-------"*6) print(classification_report(y_true=y_test, y_pred=y_pred_val)) print("-------"*6) pickle.dump(model, open(f"ner_svm_{str(i)}.pkl", 'wb')) predictions.append((y_test, y_pred_val)) all_models.append(model) break FOLDS = 5 labels = sorted(model.classes_) evaluate_overall_metrics(predictions, FOLDS) evaluate_per_pos_metrics(predictions, labels) plot_confusion_matrix(predictions, labels, FOLDS)