import pandas as pd import gradio as gr from collections import OrderedDict import logging import tempfile import os from huggingface_hub import ( HfApi, hf_hub_download, get_safetensors_metadata, metadata_load, ) from utils.misc import human_format, make_clickable_model logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) EXCLUDED_MODELS = [] # For models that misbehave :) K_EVALUATIONS = [1, 5, 10, 20, 50] DIST_EVALUATIONS = [1_000_000, 500_000, 100_000, 10_000] EXPECTED_KEY_TO_COLNAME = OrderedDict( [ ("rank", "Rank"), # Just for columns order ("model", "Model"), # Just for columns order ("model_size", "Model Size (Million)"), # Just for columns order ("conditioning", "Conditioning"), ("embedding_dim", "Embedding Dimension"), ] + [ (f"recall_at_{K}|{D}", f"R@{K} +{human_format(D)} Dist.") for D in DIST_EVALUATIONS for K in K_EVALUATIONS ] + [ ("n_dists", "Available Dists"), ], ) def get_safetensors_nparams(modelId): try: safetensors = get_safetensors_metadata(modelId) num_parameters = sum(safetensors.parameter_count.values()) return round(num_parameters / 1e6) except Exception: pass def parse_model(m): readme_path = hf_hub_download(m.modelId, filename="README.md") meta = metadata_load(readme_path) if "model-index" not in meta: raise ValueError("Missing `model-index` in metadata") for result in meta["model-index"][0]["results"]: if result["dataset"]["type"] == "Slep/LAION-RVS-Fashion": break # Found the right dataset # Get data from model-index / safetensors metadata d = { EXPECTED_KEY_TO_COLNAME["model"]: make_clickable_model(m.modelId), EXPECTED_KEY_TO_COLNAME["model_size"]: get_safetensors_nparams(m.modelId), } # Get data from exported results for metric in result["metrics"]: t = metric["type"] if t in EXPECTED_KEY_TO_COLNAME: d[EXPECTED_KEY_TO_COLNAME[t]] = metric["value"] return d def get_data_from_hub(): api = HfApi() models = api.list_models(filter="lrvsf-benchmark") df_list = [] for m in models: if m.modelId in EXCLUDED_MODELS: continue try: parsed = parse_model(m) if parsed: df_list.append(parsed) except Exception as e: logging.warning(f"Failed to parse model {m.modelId} : {e}") return pd.DataFrame(df_list, columns=EXPECTED_KEY_TO_COLNAME.values()) def filter_dataframe(df, k_filter, d_filter, c_filter): # ===== FILTER COLUMNS # Fixed column positions selected_columns = [ EXPECTED_KEY_TO_COLNAME["rank"], EXPECTED_KEY_TO_COLNAME["model"], EXPECTED_KEY_TO_COLNAME["conditioning"], EXPECTED_KEY_TO_COLNAME["model_size"], EXPECTED_KEY_TO_COLNAME["embedding_dim"], ] datatypes = ["number", "markdown", "number", "number"] for key, name in EXPECTED_KEY_TO_COLNAME.items(): if name in selected_columns: # Already added, probably part of the initial columns continue if key.startswith("recall_at_"): # Process : recall_at_K|D -> recall_at_K , D -> K , D # Could be a regex... but simple enough recall_at_K, D = key.split("|") K = recall_at_K.split("_")[-1] if int(K) in k_filter and int(D) in d_filter: selected_columns.append(name) datatypes.append("str") # Because of the ± std selected_columns.append(EXPECTED_KEY_TO_COLNAME["n_dists"]) datatypes.append("number") df = df[selected_columns] # ===== FILTER ROWS if c_filter != "all": df = df[df[EXPECTED_KEY_TO_COLNAME["conditioning"]] == c_filter] return df[selected_columns], datatypes def add_rank(df): main_metrics = df["R@1 +1M Dist."].str.split("±").str[0].astype(float) # Argsort is smallest to largest so we reverse it # We add 1 to start the rank at 1 instead of 0 df["Rank"] = main_metrics.argsort().values[::-1] + 1 return df def save_current_leaderboard(df): filename = tempfile.NamedTemporaryFile( prefix="lrvsf_export_", suffix=".csv", delete=False ).name df.to_csv(filename, index=False) return filename def load_lrvsf_models(k_filter, d_filter, c_filter, csv_file): # Remove previous tmpfile if csv_file: os.remove(csv_file) df = get_data_from_hub() df = add_rank(df) df, datatypes = filter_dataframe(df, k_filter, d_filter, c_filter) df = df.sort_values(by="Rank") filename = save_current_leaderboard(df) outputs = [ gr.DataFrame(value=df, datatype=datatypes), gr.File(filename, label="CSV File"), ] return outputs if __name__ == "__main__": with gr.Blocks() as demo: gr.Markdown( """ # LAION - Referred Visual Search - Fashion 👗 Leaderboard - To submit, refer to the [LAION-RVS-Fashion Benchmark repository](https://github.com/Simon-Lepage/LRVSF-Benchmark). - For details on the task and the dataset, refer to the [LRVSF paper](https://arxiv.org/abs/2306.02928). - To download the leaderboard as CSV, click on the file below the table. """ ) with gr.Row(): k_filter = gr.CheckboxGroup( choices=K_EVALUATIONS, value=K_EVALUATIONS, label="Recall at K" ) d_filter = gr.CheckboxGroup( choices=[(human_format(D), D) for D in DIST_EVALUATIONS], value=DIST_EVALUATIONS, label="Number of Distractors", ) c_filter = gr.Radio( choices=["all", "category", "text"], value="all", label="Conditioning", ) df_table = gr.Dataframe(type="pandas", interactive=False) csv_file = gr.File(interactive=False) refresh = gr.Button("Refresh") # Actions refresh.click( load_lrvsf_models, inputs=[k_filter, d_filter, c_filter, csv_file], outputs=[df_table, csv_file], ) demo.load( load_lrvsf_models, inputs=[k_filter, d_filter, c_filter, csv_file], outputs=[df_table, csv_file], ) demo.launch()