import subprocess import shlex import os import gradio as gr # Clone the repository subprocess.run(shlex.split("pip install -q 'git+https://github.com/facebookresearch/segment-anything-2.git'")) import torch from sam2.build_sam import build_sam2 from sam2.sam2_image_predictor import SAM2ImagePredictor DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') CHECKPOINT = f"checkpoints/sam2_hiera_large.pt" CONFIG = "sam2_hiera_l.yaml" sam2_model = build_sam2(CONFIG, CHECKPOINT, device=DEVICE) def run(image): return None demo = gr.Interface( fn=run, title="LGM Tiny", description="An extremely simplified version of [LGM](https://huggingface.co/ashawkey/LGM). Intended as resource for the [ML for 3D Course](https://huggingface.co/learn/ml-for-3d-course/unit0/introduction).", inputs="image", outputs=gr.Model3D(), examples=[ "https://huggingface.co/datasets/dylanebert/iso3d/resolve/main/jpg@512/a_cat_statue.jpg" ], cache_examples=True, allow_duplication=True, ) demo.queue().launch()