"""Convert SVG Path's elliptical arcs to Bezier curves. The code is mostly adapted from Blink's SVGPathNormalizer::DecomposeArcToCubic https://github.com/chromium/chromium/blob/93831f2/third_party/ blink/renderer/core/svg/svg_path_parser.cc#L169-L278 """ from fontTools.misc.transform import Identity, Scale from math import atan2, ceil, cos, fabs, isfinite, pi, radians, sin, sqrt, tan TWO_PI = 2 * pi PI_OVER_TWO = 0.5 * pi def _map_point(matrix, pt): # apply Transform matrix to a point represented as a complex number r = matrix.transformPoint((pt.real, pt.imag)) return r[0] + r[1] * 1j class EllipticalArc(object): def __init__(self, current_point, rx, ry, rotation, large, sweep, target_point): self.current_point = current_point self.rx = rx self.ry = ry self.rotation = rotation self.large = large self.sweep = sweep self.target_point = target_point # SVG arc's rotation angle is expressed in degrees, whereas Transform.rotate # uses radians self.angle = radians(rotation) # these derived attributes are computed by the _parametrize method self.center_point = self.theta1 = self.theta2 = self.theta_arc = None def _parametrize(self): # convert from endopoint to center parametrization: # https://www.w3.org/TR/SVG/implnote.html#ArcConversionEndpointToCenter # If rx = 0 or ry = 0 then this arc is treated as a straight line segment (a # "lineto") joining the endpoints. # http://www.w3.org/TR/SVG/implnote.html#ArcOutOfRangeParameters rx = fabs(self.rx) ry = fabs(self.ry) if not (rx and ry): return False # If the current point and target point for the arc are identical, it should # be treated as a zero length path. This ensures continuity in animations. if self.target_point == self.current_point: return False mid_point_distance = (self.current_point - self.target_point) * 0.5 point_transform = Identity.rotate(-self.angle) transformed_mid_point = _map_point(point_transform, mid_point_distance) square_rx = rx * rx square_ry = ry * ry square_x = transformed_mid_point.real * transformed_mid_point.real square_y = transformed_mid_point.imag * transformed_mid_point.imag # Check if the radii are big enough to draw the arc, scale radii if not. # http://www.w3.org/TR/SVG/implnote.html#ArcCorrectionOutOfRangeRadii radii_scale = square_x / square_rx + square_y / square_ry if radii_scale > 1: rx *= sqrt(radii_scale) ry *= sqrt(radii_scale) self.rx, self.ry = rx, ry point_transform = Scale(1 / rx, 1 / ry).rotate(-self.angle) point1 = _map_point(point_transform, self.current_point) point2 = _map_point(point_transform, self.target_point) delta = point2 - point1 d = delta.real * delta.real + delta.imag * delta.imag scale_factor_squared = max(1 / d - 0.25, 0.0) scale_factor = sqrt(scale_factor_squared) if self.sweep == self.large: scale_factor = -scale_factor delta *= scale_factor center_point = (point1 + point2) * 0.5 center_point += complex(-delta.imag, delta.real) point1 -= center_point point2 -= center_point theta1 = atan2(point1.imag, point1.real) theta2 = atan2(point2.imag, point2.real) theta_arc = theta2 - theta1 if theta_arc < 0 and self.sweep: theta_arc += TWO_PI elif theta_arc > 0 and not self.sweep: theta_arc -= TWO_PI self.theta1 = theta1 self.theta2 = theta1 + theta_arc self.theta_arc = theta_arc self.center_point = center_point return True def _decompose_to_cubic_curves(self): if self.center_point is None and not self._parametrize(): return point_transform = Identity.rotate(self.angle).scale(self.rx, self.ry) # Some results of atan2 on some platform implementations are not exact # enough. So that we get more cubic curves than expected here. Adding 0.001f # reduces the count of sgements to the correct count. num_segments = int(ceil(fabs(self.theta_arc / (PI_OVER_TWO + 0.001)))) for i in range(num_segments): start_theta = self.theta1 + i * self.theta_arc / num_segments end_theta = self.theta1 + (i + 1) * self.theta_arc / num_segments t = (4 / 3) * tan(0.25 * (end_theta - start_theta)) if not isfinite(t): return sin_start_theta = sin(start_theta) cos_start_theta = cos(start_theta) sin_end_theta = sin(end_theta) cos_end_theta = cos(end_theta) point1 = complex( cos_start_theta - t * sin_start_theta, sin_start_theta + t * cos_start_theta, ) point1 += self.center_point target_point = complex(cos_end_theta, sin_end_theta) target_point += self.center_point point2 = target_point point2 += complex(t * sin_end_theta, -t * cos_end_theta) point1 = _map_point(point_transform, point1) point2 = _map_point(point_transform, point2) target_point = _map_point(point_transform, target_point) yield point1, point2, target_point def draw(self, pen): for point1, point2, target_point in self._decompose_to_cubic_curves(): pen.curveTo( (point1.real, point1.imag), (point2.real, point2.imag), (target_point.real, target_point.imag), )