try: import versa except ImportError: from subprocess import call with open('versa.sh', 'rb') as file: script = file.read() rc = call(script, shell=True) import os import shutil from espnet2.sds.asr.espnet_asr import ESPnetASRModel from espnet2.sds.asr.owsm_asr import OWSMModel from espnet2.sds.asr.owsm_ctc_asr import OWSMCTCModel from espnet2.sds.asr.whisper_asr import WhisperASRModel from espnet2.sds.tts.espnet_tts import ESPnetTTSModel from espnet2.sds.tts.chat_tts import ChatTTSModel from espnet2.sds.llm.hugging_face_llm import HuggingFaceLLM from espnet2.sds.vad.webrtc_vad import WebrtcVADModel from espnet2.sds.eval.TTS_intelligibility import handle_espnet_TTS_intelligibility from espnet2.sds.eval.ASR_WER import handle_espnet_ASR_WER from espnet2.sds.eval.TTS_speech_quality import TTS_psuedomos from espnet2.sds.eval.LLM_Metrics import perplexity, vert, bert_score, DialoGPT_perplexity from espnet2.sds.utils.chat import Chat from espnet2.sds.end_to_end.mini_omni_e2e import MiniOmniE2EModel import argparse import torch access_token = os.environ.get("HF_TOKEN") ASR_name="pyf98/owsm_ctc_v3.1_1B" LLM_name="meta-llama/Llama-3.2-1B-Instruct" TTS_name="kan-bayashi/ljspeech_vits" ASR_options="pyf98/owsm_ctc_v3.1_1B,espnet/owsm_ctc_v3.2_ft_1B,espnet/owsm_v3.1_ebf,librispeech_asr,whisper".split(",") LLM_options="meta-llama/Llama-3.2-1B-Instruct,HuggingFaceTB/SmolLM2-1.7B-Instruct".split(",") TTS_options="kan-bayashi/ljspeech_vits,kan-bayashi/libritts_xvector_vits,kan-bayashi/vctk_multi_spk_vits,ChatTTS".split(",") Eval_options="Latency,TTS Intelligibility,TTS Speech Quality,ASR WER,Text Dialog Metrics" upload_to_hub=None # def read_args(): # global access_token # global ASR_name # global LLM_name # global TTS_name # global ASR_options # global LLM_options # global TTS_options # global Eval_options # global upload_to_hub # parser = argparse.ArgumentParser(description="Run the app with HF_TOKEN as a command-line argument.") # parser.add_argument("--HF_TOKEN", required=True, help="Provide the Hugging Face token.") # parser.add_argument("--asr_options", required=True, help="Provide the possible ASR options available to user.") # parser.add_argument("--llm_options", required=True, help="Provide the possible LLM options available to user.") # parser.add_argument("--tts_options", required=True, help="Provide the possible TTS options available to user.") # parser.add_argument("--eval_options", required=True, help="Provide the possible automatic evaluation metrics available to user.") # parser.add_argument("--default_asr_model", required=False, default="pyf98/owsm_ctc_v3.1_1B", help="Provide the default ASR model.") # parser.add_argument("--default_llm_model", required=False, default="meta-llama/Llama-3.2-1B-Instruct", help="Provide the default ASR model.") # parser.add_argument("--default_tts_model", required=False, default="kan-bayashi/ljspeech_vits", help="Provide the default ASR model.") # parser.add_argument("--upload_to_hub", required=False, default=None, help="Hugging Face dataset to upload user data") # args = parser.parse_args() # access_token=args.HF_TOKEN # ASR_name=args.default_asr_model # LLM_name=args.default_llm_model # TTS_name=args.default_tts_model # ASR_options=args.asr_options.split(",") # LLM_options=args.llm_options.split(",") # TTS_options=args.tts_options.split(",") # Eval_options=args.eval_options.split(",") # upload_to_hub=args.upload_to_hub # read_args() from huggingface_hub import HfApi api = HfApi() import nltk nltk.download('averaged_perceptron_tagger_eng') import gradio as gr import numpy as np chat = Chat(2) chat.init_chat({"role": "system", "content": "You are a helpful and friendly AI assistant. The user is talking to you with their voice and you should respond in a conversational style. You are polite, respectful, and aim to provide concise and complete responses of less than 15 words."}) user_role = "user" text2speech=None s2t=None LM_pipe=None client=None latency_ASR=0.0 latency_LM=0.0 latency_TTS=0.0 text_str="" asr_output_str="" vad_output=None audio_output = None audio_output1 = None LLM_response_arr=[] total_response_arr=[] def handle_selection(option): yield gr.Textbox(visible=False),gr.Textbox(visible=False),gr.Audio(visible=False) global text2speech tag = option if tag=="ChatTTS": text2speech = ChatTTSModel() else: text2speech = ESPnetTTSModel(tag) text2speech.warmup() yield gr.Textbox(visible=True),gr.Textbox(visible=True),gr.Audio(visible=True) def handle_LLM_selection(option): yield gr.Textbox(visible=False),gr.Textbox(visible=False),gr.Audio(visible=False) global LM_pipe LM_pipe = HuggingFaceLLM(access_token=access_token,tag = option) LM_pipe.warmup() yield gr.Textbox(visible=True),gr.Textbox(visible=True),gr.Audio(visible=True) def handle_ASR_selection(option): yield gr.Textbox(visible=False),gr.Textbox(visible=False),gr.Audio(visible=False) if option=="librispeech_asr": option="espnet/simpleoier_librispeech_asr_train_asr_conformer7_wavlm_large_raw_en_bpe5000_sp" global s2t if option=="espnet/owsm_v3.1_ebf": s2t = OWSMModel() elif option=="espnet/simpleoier_librispeech_asr_train_asr_conformer7_wavlm_large_raw_en_bpe5000_sp": s2t = ESPnetASRModel(tag=option) elif option=="whisper": s2t = WhisperASRModel() else: s2t = OWSMCTCModel(tag=option) s2t.warmup() yield gr.Textbox(visible=True),gr.Textbox(visible=True),gr.Audio(visible=True) def handle_eval_selection(option, TTS_audio_output, LLM_Output, ASR_audio_output, ASR_transcript): global LLM_response_arr global total_response_arr yield (option,gr.Textbox(visible=True)) if option=="Latency": text=f"ASR Latency: {latency_ASR:.2f}\nLLM Latency: {latency_LM:.2f}\nTTS Latency: {latency_TTS:.2f}" yield (None,text) elif option=="TTS Intelligibility": yield (None,handle_espnet_TTS_intelligibility(TTS_audio_output,LLM_Output)) elif option=="TTS Speech Quality": yield (None,TTS_psuedomos(TTS_audio_output)) elif option=="ASR WER": yield (None,handle_espnet_ASR_WER(ASR_audio_output, ASR_transcript)) elif option=="Text Dialog Metrics": yield (None,perplexity(LLM_Output.replace("\n"," "))+vert(LLM_response_arr)+bert_score(total_response_arr)+DialoGPT_perplexity(ASR_transcript.replace("\n"," "),LLM_Output.replace("\n"," "))) def handle_eval_selection_E2E(option, TTS_audio_output, LLM_Output): global LLM_response_arr global total_response_arr yield (option,gr.Textbox(visible=True)) if option=="Latency": text=f"Total Latency: {latency_TTS:.2f}" yield (None,text) elif option=="TTS Intelligibility": yield (None,handle_espnet_TTS_intelligibility(TTS_audio_output,LLM_Output)) elif option=="TTS Speech Quality": yield (None,TTS_psuedomos(TTS_audio_output)) elif option=="Text Dialog Metrics": yield (None,perplexity(LLM_Output.replace("\n"," "))+vert(LLM_response_arr)) def handle_type_selection(option,TTS_radio,ASR_radio,LLM_radio): global client global LM_pipe global s2t global text2speech yield (gr.Radio(visible=False),gr.Radio(visible=False),gr.Radio(visible=False),gr.Radio(visible=False), gr.Textbox(visible=False),gr.Textbox(visible=False),gr.Audio(visible=False),gr.Radio(visible=False),gr.Radio(visible=False)) if option=="Cascaded": client=None for _ in handle_selection(TTS_radio): continue for _ in handle_ASR_selection(ASR_radio): continue for _ in handle_LLM_selection(LLM_radio): continue yield (gr.Radio(visible=True),gr.Radio(visible=True),gr.Radio(visible=True),gr.Radio(visible=False),gr.Textbox(visible=True),gr.Textbox(visible=True),gr.Audio(visible=True),gr.Radio(visible=True, interactive=True),gr.Radio(visible=False)) else: text2speech=None s2t=None LM_pipe=None handle_E2E_selection() yield (gr.Radio(visible=False),gr.Radio(visible=False),gr.Radio(visible=False),gr.Radio(visible=True),gr.Textbox(visible=True),gr.Textbox(visible=True),gr.Audio(visible=True),gr.Radio(visible=False),gr.Radio(visible=True, interactive=True)) def handle_E2E_selection(): global client client = MiniOmniE2EModel() client.warmup() def start_warmup(): global client for opt in ASR_options: if opt==ASR_name: continue print(opt) for _ in handle_ASR_selection(opt): continue for opt in LLM_options: if opt==LLM_name: continue print(opt) for _ in handle_LLM_selection(opt): continue for opt in TTS_options: if opt==TTS_name: continue print(opt) for _ in handle_selection(opt): continue handle_E2E_selection() client=None for _ in handle_selection(TTS_name): continue for _ in handle_ASR_selection(ASR_name): continue for _ in handle_LLM_selection(LLM_name): continue dummy_input = torch.randn( (3000), dtype=getattr(torch, "float16"), device="cpu", ).cpu().numpy() dummy_text="This is dummy text" for opt in Eval_options: handle_eval_selection(opt, dummy_input, dummy_text, dummy_input, dummy_text) start_warmup() vad_model=WebrtcVADModel() callback = gr.CSVLogger() start_record_time=None enable_btn = gr.Button(interactive=True, visible=True) disable_btn = gr.Button(interactive=False, visible=False) def flash_buttons(): btn_updates = (enable_btn,) * 8 print(enable_btn) yield ("","",)+btn_updates def get_ip(request: gr.Request): if "cf-connecting-ip" in request.headers: ip = request.headers["cf-connecting-ip"] elif "x-forwarded-for" in request.headers: ip = request.headers["x-forwarded-for"] if "," in ip: ip = ip.split(",")[0] else: ip = request.client.host return ip def vote_last_response(vote_type, request: gr.Request): with open("save_dict.json", "a") as fout: data = { "tstamp": round(time.time(), 4), "type": vote_type, "ip": get_ip(request), } fout.write(json.dumps(data) + "\n") def natural_vote1_last_response( request: gr.Request ): ip_address1=get_ip(request) print(f"Very Natural (voted). ip: {ip_address1}") return ("Very Natural",ip_address1,)+(disable_btn,) * 4 def natural_vote2_last_response( request: gr.Request ): ip_address1=get_ip(request) print(f"Somewhat Awkward (voted). ip: {ip_address1}") return ("Somewhat Awkward",ip_address1,)+(disable_btn,) * 4 def natural_vote3_last_response( request: gr.Request ): ip_address1=get_ip(request) print(f"Very Awkward (voted). ip: {ip_address1}") return ("Very Awkward",ip_address1,)+(disable_btn,) * 4 def natural_vote4_last_response( request: gr.Request ): ip_address1=get_ip(request) print(f"Unnatural (voted). ip: {ip_address1}") return ("Unnatural",ip_address1,)+(disable_btn,) * 4 def relevant_vote1_last_response( request: gr.Request ): ip_address1=get_ip(request) print(f"Highly Relevant (voted). ip: {ip_address1}") return ("Highly Relevant",ip_address1,)+(disable_btn,) * 4 def relevant_vote2_last_response( request: gr.Request ): ip_address1=get_ip(request) print(f"Partially Relevant (voted). ip: {ip_address1}") return ("Partially Relevant",ip_address1,)+(disable_btn,) * 4 def relevant_vote3_last_response( request: gr.Request ): ip_address1=get_ip(request) print(f"Slightly Irrelevant (voted). ip: {ip_address1}") return ("Slightly Irrelevant",ip_address1,)+(disable_btn,) * 4 def relevant_vote4_last_response( request: gr.Request ): ip_address1=get_ip(request) print(f"Completely Irrelevant (voted). ip: {ip_address1}") return ("Completely Irrelevant",ip_address1,)+(disable_btn,) * 4 import json import time def transcribe(stream, new_chunk, option, asr_option): sr, y = new_chunk global text_str global chat global user_role global audio_output global audio_output1 global vad_output global asr_output_str global start_record_time global sids global spembs global latency_ASR global latency_LM global latency_TTS global LLM_response_arr global total_response_arr if stream is None: stream=y chat.init_chat({"role": "system", "content": "You are a helpful and friendly AI assistant. You are polite, respectful, and aim to provide concise and complete responses of less than 15 words."}) text_str="" audio_output = None audio_output1 = None else: stream=np.concatenate((stream,y)) orig_sr=sr sr=16000 if client is not None: array=vad_model(y,orig_sr, binary=True) else: array=vad_model(y,orig_sr) if array is not None: print("VAD: end of speech detected") start_time = time.time() if client is not None: try: (text_str, audio_output)=client(array, orig_sr) except Exception as e: text_str="" audio_output=None raise gr.Error(f"Error during audio streaming: {e}") asr_output_str="" latency_TTS=(time.time() - start_time) else: prompt=s2t(array) if len(prompt.strip().split())<2: text_str1=text_str yield (stream, asr_output_str, text_str1, audio_output, audio_output1) return asr_output_str=prompt total_response_arr.append(prompt.replace("\n"," ")) start_LM_time=time.time() latency_ASR=(start_LM_time - start_time) chat.append({"role": user_role, "content": prompt}) chat_messages = chat.to_list() generated_text = LM_pipe(chat_messages) start_TTS_time=time.time() latency_LM=(start_TTS_time - start_LM_time) chat.append({"role": "assistant", "content": generated_text}) text_str=generated_text audio_output=text2speech(text_str) latency_TTS=(time.time() - start_TTS_time) audio_output1=(orig_sr,stream) stream=y LLM_response_arr.append(text_str.replace("\n"," ")) total_response_arr.append(text_str.replace("\n"," ")) text_str1=text_str if ((text_str!="") and (start_record_time is None)): start_record_time=time.time() elif start_record_time is not None: current_record_time=time.time() if current_record_time-start_record_time>300: gr.Info("Conversations are limited to 5 minutes. The session will restart in approximately 60 seconds. Please wait for the demo to reset. Close this message once you have read it.", duration=None) yield stream,gr.Textbox(visible=False),gr.Textbox(visible=False),gr.Audio(visible=False),gr.Audio(visible=False) if upload_to_hub is not None: api.upload_folder( folder_path="flagged_data_points", path_in_repo="checkpoint_"+str(start_record_time), repo_id=upload_to_hub, repo_type="dataset", token=access_token, ) chat.buffer=[{"role": "system", "content": "You are a helpful and friendly AI assistant. You are polite, respectful, and aim to provide concise and complete responses of less than 15 words."}] text_str="" audio_output = None audio_output1 = None asr_output_str = "" start_record_time = None LLM_response_arr=[] total_response_arr=[] shutil.rmtree('flagged_data_points') os.mkdir("flagged_data_points") yield (stream,asr_output_str,text_str1, audio_output, audio_output1) yield stream,gr.Textbox(visible=True),gr.Textbox(visible=True),gr.Audio(visible=True),gr.Audio(visible=False) yield (stream,asr_output_str,text_str1, audio_output, audio_output1) with gr.Blocks( title="E2E Spoken Dialog System", ) as demo: with gr.Row(): with gr.Column(scale=1): user_audio = gr.Audio(sources=["microphone"], streaming=True, waveform_options=gr.WaveformOptions(sample_rate=16000)) with gr.Row(): type_radio = gr.Radio( choices=["Cascaded", "E2E"], label="Choose type of Spoken Dialog:", value="Cascaded", ) with gr.Row(): ASR_radio = gr.Radio( choices=ASR_options, label="Choose ASR:", value=ASR_name, ) with gr.Row(): LLM_radio = gr.Radio( choices=LLM_options, label="Choose LLM:", value=LLM_name, ) with gr.Row(): radio = gr.Radio( choices=TTS_options, label="Choose TTS:", value=TTS_name, ) with gr.Row(): E2Eradio = gr.Radio( choices=["mini-omni"], label="Choose E2E model:", value="mini-omni", visible=False, ) with gr.Row(): feedback_btn = gr.Button( value="Please provide your feedback after each system response below.", visible=True, interactive=False, elem_id="button" ) with gr.Row(): natural_btn1 = gr.Button( value="Very Natural", visible=False, interactive=False, scale=1 ) natural_btn2 = gr.Button( value="Somewhat Awkward", visible=False, interactive=False, scale=1 ) natural_btn3 = gr.Button(value="Very Awkward", visible=False, interactive=False, scale=1) natural_btn4 = gr.Button( value="Unnatural", visible=False, interactive=False, scale=1 ) with gr.Row(): relevant_btn1 = gr.Button( value="Highly Relevant", visible=False, interactive=False, scale=1 ) relevant_btn2 = gr.Button( value="Partially Relevant", visible=False, interactive=False, scale=1 ) relevant_btn3 = gr.Button(value="Slightly Irrelevant", visible=False, interactive=False, scale=1) relevant_btn4 = gr.Button( value= "Completely Irrelevant", visible=False, interactive=False, scale=1 ) with gr.Column(scale=1): output_audio = gr.Audio(label="Output", interactive=False, autoplay=True, visible=True) output_audio1 = gr.Audio(label="Output1", autoplay=False, visible=False) output_asr_text = gr.Textbox(label="ASR output", interactive=False) output_text = gr.Textbox(label="LLM output", interactive=False) eval_radio = gr.Radio( choices=["Latency", "TTS Intelligibility", "TTS Speech Quality", "ASR WER","Text Dialog Metrics"], label="Choose Evaluation metrics:", ) eval_radio_E2E = gr.Radio( choices=["Latency", "TTS Intelligibility", "TTS Speech Quality","Text Dialog Metrics"], label="Choose Evaluation metrics:", visible=False, ) output_eval_text = gr.Textbox(label="Evaluation Results") state = gr.State() with gr.Row(): privacy_text = gr.Textbox(label="Privacy Notice",interactive=False, value="By using this demo, you acknowledge that interactions with this dialog system are collected for research and improvement purposes. The data will only be used to enhance the performance and understanding of the system. If you have any concerns about data collection, please discontinue use.") btn_list=[ natural_btn1, natural_btn2, natural_btn3, natural_btn4, relevant_btn1, relevant_btn2, relevant_btn3, relevant_btn4, ] natural_btn_list=[ natural_btn1, natural_btn2, natural_btn3, natural_btn4, ] relevant_btn_list=[ relevant_btn1, relevant_btn2, relevant_btn3, relevant_btn4, ] natural_response = gr.Textbox(label="natural_response",visible=False,interactive=False) diversity_response = gr.Textbox(label="diversity_response",visible=False,interactive=False) ip_address = gr.Textbox(label="ip_address",visible=False,interactive=False) callback.setup([user_audio, output_asr_text, output_text, output_audio,output_audio1,type_radio, ASR_radio, LLM_radio, radio, E2Eradio, natural_response,diversity_response,ip_address],"flagged_data_points") user_audio.stream(transcribe, inputs=[state, user_audio, radio, ASR_radio], outputs=[state, output_asr_text, output_text, output_audio, output_audio1]).then(lambda *args: callback.flag(list(args)),[user_audio], None,preprocess=False) radio.change(fn=handle_selection, inputs=[radio], outputs=[output_asr_text, output_text, output_audio]) LLM_radio.change(fn=handle_LLM_selection, inputs=[LLM_radio], outputs=[output_asr_text, output_text, output_audio]) ASR_radio.change(fn=handle_ASR_selection, inputs=[ASR_radio], outputs=[output_asr_text, output_text, output_audio]) eval_radio.change(fn=handle_eval_selection, inputs=[eval_radio,output_audio,output_text,output_audio1,output_asr_text], outputs=[eval_radio,output_eval_text]) eval_radio_E2E.change(fn=handle_eval_selection_E2E, inputs=[eval_radio_E2E,output_audio,output_text], outputs=[eval_radio_E2E,output_eval_text]) type_radio.change(fn=handle_type_selection,inputs=[type_radio,radio,ASR_radio,LLM_radio], outputs=[radio,ASR_radio,LLM_radio, E2Eradio,output_asr_text, output_text, output_audio,eval_radio,eval_radio_E2E]) output_audio.play( flash_buttons, [], [natural_response,diversity_response]+btn_list ).then(lambda *args: callback.flag(list(args)),[user_audio,output_asr_text, output_text, output_audio,output_audio1,type_radio, ASR_radio, LLM_radio, radio, E2Eradio], None,preprocess=False) natural_btn1.click(natural_vote1_last_response,[],[natural_response,ip_address]+natural_btn_list).then(lambda *args: callback.flag(list(args)),[user_audio,output_asr_text, output_text, output_audio,output_audio1,type_radio, ASR_radio, LLM_radio, radio, E2Eradio, natural_response,diversity_response,ip_address], None,preprocess=False) natural_btn2.click(natural_vote2_last_response,[],[natural_response,ip_address]+natural_btn_list).then(lambda *args: callback.flag(list(args)),[user_audio,output_asr_text, output_text, output_audio,output_audio1,type_radio, ASR_radio, LLM_radio, radio, E2Eradio, natural_response,diversity_response,ip_address], None,preprocess=False) natural_btn3.click(natural_vote3_last_response,[],[natural_response,ip_address]+natural_btn_list).then(lambda *args: callback.flag(list(args)),[user_audio,output_asr_text, output_text, output_audio,output_audio1,type_radio, ASR_radio, LLM_radio, radio, E2Eradio, natural_response,diversity_response,ip_address], None,preprocess=False) natural_btn4.click(natural_vote4_last_response,[],[natural_response,ip_address]+natural_btn_list).then(lambda *args: callback.flag(list(args)),[user_audio,output_asr_text, output_text, output_audio,output_audio1,type_radio, ASR_radio, LLM_radio, radio, E2Eradio, natural_response,diversity_response,ip_address], None,preprocess=False) relevant_btn1.click(relevant_vote1_last_response,[],[diversity_response,ip_address]+relevant_btn_list).then(lambda *args: callback.flag(list(args)),[user_audio,output_asr_text, output_text, output_audio,output_audio1,type_radio, ASR_radio, LLM_radio, radio, E2Eradio, natural_response,diversity_response,ip_address], None,preprocess=False) relevant_btn2.click(relevant_vote2_last_response,[],[diversity_response,ip_address]+relevant_btn_list).then(lambda *args: callback.flag(list(args)),[user_audio,output_asr_text, output_text, output_audio,output_audio1,type_radio, ASR_radio, LLM_radio, radio, E2Eradio, natural_response,diversity_response,ip_address], None,preprocess=False) relevant_btn3.click(relevant_vote3_last_response,[],[diversity_response,ip_address]+relevant_btn_list).then(lambda *args: callback.flag(list(args)),[user_audio,output_asr_text, output_text, output_audio,output_audio1,type_radio, ASR_radio, LLM_radio, radio, E2Eradio, natural_response,diversity_response,ip_address], None,preprocess=False) relevant_btn4.click(relevant_vote4_last_response,[],[diversity_response,ip_address]+relevant_btn_list).then(lambda *args: callback.flag(list(args)),[user_audio,output_asr_text, output_text, output_audio,output_audio1,type_radio, ASR_radio, LLM_radio, radio, E2Eradio, natural_response,diversity_response,ip_address], None,preprocess=False) demo.launch(share=True)