from langchain_community.utilities import SQLDatabase from langchain_core.callbacks import BaseCallbackHandler from typing import TYPE_CHECKING, Any, Optional, TypeVar, Union from uuid import UUID from langchain_community.agent_toolkits import create_sql_agent from langchain_openai import ChatOpenAI from langchain_community.vectorstores import Chroma from langchain_core.example_selectors import SemanticSimilarityExampleSelector from langchain_openai import OpenAIEmbeddings from langchain.agents.agent_toolkits import create_retriever_tool from langchain_core.output_parsers import JsonOutputParser import os from langchain_core.prompts import ( ChatPromptTemplate, FewShotPromptTemplate, MessagesPlaceholder, PromptTemplate, SystemMessagePromptTemplate, ) import ast import re from utils import query_as_list, get_answer import gradio as gr from fewshot import examples llm = ChatOpenAI(model="gpt-4o-mini", temperature=0, api_key=os.environ['API_KEY']) example_selector = SemanticSimilarityExampleSelector.from_examples( examples, OpenAIEmbeddings(model="text-embedding-3-small", api_key=os.environ['API_KEY']), Chroma(persist_directory="data"), # Chroma, k=5, input_keys=["input"], ) db = SQLDatabase.from_uri("sqlite:///attendance_system.db") employee = query_as_list(db, "SELECT FullName FROM Employee") vector_db = Chroma.from_texts(employee, OpenAIEmbeddings(model="text-embedding-3-small", api_key=os.environ['API_KEY'])) retriever = vector_db.as_retriever(search_kwargs={"k": 15}) description = """Use to look up values to filter on. Input is an approximate spelling of the proper noun, output is \ valid proper nouns. Use the noun most similar to the search.""" retriever_tool = create_retriever_tool( retriever, name="search_proper_nouns", description=description, ) if __name__ == "__main__": demo = gr.Interface(fn=get_answer, inputs="text", outputs="text") demo.launch()