Spaces:
Sleeping
Sleeping
File size: 1,145 Bytes
19d2f32 17eee9f 19d2f32 17eee9f 19d2f32 17eee9f 8f4ee84 19d2f32 17eee9f 19d2f32 17eee9f 8f4ee84 19d2f32 17eee9f 19d2f32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import streamlit as st
from transformers import GPT2LMHeadModel, GPT2Tokenizer
@st.cache(allow_output_mutation=True)
def load_model():
tokenizer = GPT2Tokenizer.from_pretrained("gpt2-large")
model = GPT2LMHeadModel.from_pretrained("gpt2-large")
return tokenizer, model
def generate_blog_post(topic, max_length=200):
tokenizer, model = load_model()
input_ids = tokenizer.encode(topic, return_tensors='pt')
output = model.generate(input_ids, max_length=max_length, num_return_sequences=1, no_repeat_ngram_size=2, pad_token_id=tokenizer.eos_token_id)
blog_post = tokenizer.decode(output[0], skip_special_tokens=True)
return blog_post
st.title("Blog Post Generator")
st.write("Enter a topic to generate a blog post using GPT-2 large.")
topic = st.text_input("Topic:", "")
length = st.slider("Post Length (in tokens):", min_value=50, max_value=500, value=200)
if st.button("Generate"):
if topic:
blog_post = generate_blog_post(topic, max_length=length)
st.subheader("Generated Blog Post")
st.write(blog_post)
else:
st.write("Please enter a topic to generate a blog post.")
|