import streamlit as st from transformers import pipeline from transformers import AutoModelWithLMHead, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("flan-alpaca-base") model = AutoModelWithLMHead.from_pretrained("flan-alpaca-base") device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print("Is cuda available:", torch.cuda.is_available()) model = model.to(device) text = st.text_area("Enter your text:") if text: # model = pipeline(model="flan-alpaca-xl") #model(prompt, max_length=128, do_sample=True) input_text = "question: %s " % (text) features = tokenizer([input_text], return_tensors='pt') out = model.generate(input_ids=features['input_ids'].to(device), attention_mask=features['attention_mask'].to(device)) if tokenizer.decode(out[0]): st.json(tokenizer.decode(out[0]))