import nltk import librosa import torch import gradio as gr from transformers import WhisperProcessor, WhisperForConditionalGeneration, WhisperTokenizer nltk.download("punkt") from transformers import pipeline import scipy.io.wavfile import soundfile as sf from huggingface_hub import HfApi, CommitOperationAdd, CommitOperationDelete model_name = "Shubham09/whisper31filescheck" processor = WhisperProcessor.from_pretrained(model_name,task="transcribe") #tokenizer = WhisperTokenizer.from_pretrained(model_name) model = WhisperForConditionalGeneration.from_pretrained(model_name) def load_data(input_file): #reading the file speech, sample_rate = librosa.load(input_file) #make it 1-D if len(speech.shape) > 1: speech = speech[:,0] + speech[:,1] #Resampling the audio at 16KHz if sample_rate !=16000: speech = librosa.resample(speech, sample_rate,16000) return speech # def write_to_file(input_file): # fs = 16000 # sf.write("my_Audio_file.flac",input_file, fs) # api = HfApi() # operations = [ # CommitOperationAdd(path_in_repo="my_Audio_file.flac", path_or_fileobj="Shubham09/whisper31filescheck/repo/my_Audio_file.flac"), # # CommitOperationAdd(path_in_repo="weights.h5", path_or_fileobj="~/repo/weights-final.h5"), # # CommitOperationDelete(path_in_repo="old-weights.h5"), # # CommitOperationDelete(path_in_repo="logs/"), #scipy.io.wavfile.write("microphone-result.wav") # with open("microphone-results.wav", "wb") as f: # f.write(input_file.get_wav_data()) # import base64 # wav_file = open("temp.wav", "wb") # decode_string = base64.b64decode(input_file) # wav_file.write(decode_string) pipe = pipeline(model="Shubham09/whisper31filescheck") # change to "your-username/the-name-you-picked" def asr_transcript(input_file): #audio = "Shubham09/whisper31filescheck/repo/my_Audio_file.flac" text = pipe(input_file)["text"] return text # speech = load_data(input_file) # #Tokenize # input_features = processor(speech).input_features #, padding="longest" , return_tensors="pt" # #input_values = tokenizer(speech, return_tensors="pt").input_values # #Take logits # logits = model(input_features).logits # #Take argmax # predicted_ids = torch.argmax(logits, dim=-1) # #Get the words from predicted word ids # transcription = processor.batch_decode(predicted_ids) # #Correcting the letter casing # #transcription = correct_casing(transcription.lower()) # return transcription gr.Interface(asr_transcript, inputs = gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker"), outputs = gr.outputs.Textbox(label="Output Text"), title="ASR using Whisper", description = "This application displays transcribed text for given audio input", examples = [["Actuator.wav"], ["anomalies.wav"]], theme="grass").launch(share=True)