### 1. Imports and class names setup ### import gradio as gr import os import torch import numpy as np from model import create_Leaders_model from timeit import default_timer as timer from typing import Tuple, Dict # Setup class names class_names = ['Barack Obama', 'Narendra Modi', 'Vladimir Vladimirovich Putin'] ### 2. Model and transforms preparation ### Leaders, Leaders_transforms = create_Leaders_model( num_classes=3, # len(class_names) would also work ) # Load saved weights Leaders.load_state_dict( torch.load( f="Leaders_model_save.pth", map_location=torch.device("cpu"), # load to CPU ) ) ### 3. Predict function ### # Create predict function def predict(img) -> Tuple[Dict, float]: """Transforms and performs a prediction on img and returns prediction and time taken. """ threshold=0.80 # Start the timer start_time = timer() # Transform the target image and add a batch dimension img = Leaders_transforms(img).unsqueeze(0) # Put model into evaluation mode and turn on inference mode Leaders.eval() with torch.inference_mode(): # Pass the transformed image through the model and turn the prediction logits into prediction probabilities pred_probs = torch.softmax(Leaders(img), dim=1) y=(pred_probs>threshold).float() pred_prob=y.long() pred_prob=pred_prob.numpy() print(pred_prob) x=np.count_nonzero(pred_prob) print(x) if x==0: pred_labels_and_probs={"Unknown Images found..Please give images of Barack Obama,Narendra Modi or Putin":0} else: pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter) # Calculate the prediction time pred_time = round(timer() - start_time, 5) # Return the prediction dictionary and prediction time return pred_labels_and_probs, pred_time ### 4. Gradio app ### # Create title, description and article strings title = "Leaders Classifier " description = "An computer vision model to classify images of Leaders as Barack Obama,Narendra Modi,Vladimir Vladimirovich Putin" article = "Created by Shreya Valte" # Create the Gradio demo demo = gr.Interface(fn=predict, # mapping function from input to output inputs=gr.Image(type="pil"), # what are the inputs? outputs=[gr.Label(num_top_classes=3, label="Predictions"), # what are the outputs? gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs # Create examples list from "examples/" directory examples=["Image_1.jpg","Image_108.jpg"], title=title, description=description, article=article) # Launch the demo! demo.launch()