## Conversational Q&A Chatbot import streamlit as st from langchain.schema import HumanMessage, SystemMessage, AIMessage # from openai import AzureChatOpenAI from langchain_openai import AzureChatOpenAI import os # import dotenv # dotenv.load_dotenv() AZURE_OPENAI_KEY = "7a8f58dd922e4c78b1de2b660ebe61d6" AZURE_OPENAI_ENDPOINT = "https://mlsdaiinstance.openai.azure.com/" AZURE_OPENAI_VERSION = "2024-05-01-preview" EMBEDDING_MODEL = "text-embedding-ada-002" CHAT_MODEL = "gpt-35-turbo" # Initialize the Azure OpenAI client llm = AzureChatOpenAI( # azure_endpoint="https://azureopenai16.openai.azure.com/", # api_key="75db73a3b9da40b0b6e0e98273a6029f", # api_version="2024-05-01-preview", # deployment_name="gpt-35-turbo", # temperature=0.5 openai_api_type="azure", openai_api_version=AZURE_OPENAI_VERSION, openai_api_key=AZURE_OPENAI_KEY, azure_endpoint=AZURE_OPENAI_ENDPOINT, deployment_name=CHAT_MODEL, temperature=0 ) # ''' ## Streamlit UI st.set_page_config(page_title="Conversational Q&A Chatbot") st.header("Hey, Let's Chat") if 'flow_messages' not in st.session_state: st.session_state['flow_messages'] = [ SystemMessage(content="You are an AI assitant who answers the questions asked truthfully!") ] ## Function to load OpenAI model and get respones def get_chatmodel_response(question): st.session_state['flow_messages'].append(HumanMessage(content=question)) response = llm(st.session_state['flow_messages']) st.session_state['flow_messages'].append(AIMessage(content=response.content)) return response.content input = st.text_input("Input: ", key="input") response = get_chatmodel_response(input) submit = st.button("Ask the question") ## If ask button is clicked if submit: st.subheader("The Response is") st.write(response)