import os import json import re import gradio as gr import pandas as pd import requests import random import urllib.parse from tempfile import NamedTemporaryFile from typing import List, Dict, Optional from bs4 import BeautifulSoup import logging from duckduckgo_search import DDGS from langchain_community.llms import HuggingFaceHub from langchain_community.vectorstores import FAISS from langchain_community.document_loaders import PyPDFLoader from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_core.documents import Document from langchain.chains import LLMChain from langchain.prompts import PromptTemplate # Global variables huggingface_token = os.environ.get("HUGGINGFACE_TOKEN") def get_model(temperature, top_p, repetition_penalty): return HuggingFaceHub( repo_id="mistralai/Mistral-7B-Instruct-v0.3", model_kwargs={ "temperature": temperature, "top_p": top_p, "repetition_penalty": repetition_penalty, "max_length": 1000 }, huggingfacehub_api_token=huggingface_token ) def load_document(file: NamedTemporaryFile) -> List[Document]: loader = PyPDFLoader(file.name) return loader.load_and_split() def update_vectors(files): if not files: return "Please upload at least one PDF file." embed = get_embeddings() total_chunks = 0 all_data = [] for file in files: data = load_document(file) all_data.extend(data) total_chunks += len(data) if os.path.exists("faiss_database"): database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) database.add_documents(all_data) else: database = FAISS.from_documents(all_data, embed) database.save_local("faiss_database") return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files." def get_embeddings(): return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") def clear_cache(): if os.path.exists("faiss_database"): os.remove("faiss_database") return "Cache cleared successfully." else: return "No cache to clear." def extract_text_from_webpage(html): soup = BeautifulSoup(html, 'html.parser') for script in soup(["script", "style"]): script.extract() text = soup.get_text() lines = (line.strip() for line in text.splitlines()) chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) text = '\n'.join(chunk for chunk in chunks if chunk) return text _useragent_list = [ "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", ] def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None): escaped_term = urllib.parse.quote_plus(term) start = 0 all_results = [] max_chars_per_page = 8000 with requests.Session() as session: while start < num_results: try: user_agent = random.choice(_useragent_list) headers = { 'User-Agent': user_agent } resp = session.get( url="https://www.google.com/search", headers=headers, params={ "q": term, "num": num_results - start, "hl": lang, "start": start, "safe": safe, }, timeout=timeout, verify=ssl_verify, ) resp.raise_for_status() except requests.exceptions.RequestException as e: print(f"Error retrieving search results: {e}") break soup = BeautifulSoup(resp.text, "html.parser") result_block = soup.find_all("div", attrs={"class": "g"}) if not result_block: break for result in result_block: link = result.find("a", href=True) if link: link = link["href"] try: webpage = session.get(link, headers=headers, timeout=timeout) webpage.raise_for_status() visible_text = extract_text_from_webpage(webpage.text) if len(visible_text) > max_chars_per_page: visible_text = visible_text[:max_chars_per_page] + "..." all_results.append({"link": link, "text": visible_text}) except requests.exceptions.RequestException as e: print(f"Error retrieving webpage content: {e}") all_results.append({"link": link, "text": None}) else: all_results.append({"link": None, "text": None}) start += len(result_block) if not all_results: return [{"link": None, "text": "No information found in the web search results."}] return all_results def duckduckgo_search(query, max_results=5): try: search = DDGSearch() results = search.text(query, max_results=max_results) formatted_results = [] for result in results: formatted_results.append({ "link": result.get('href', ''), "text": result.get('title', '') + '. ' + result.get('body', '') }) return formatted_results except Exception as e: print(f"Error in DuckDuckGo search: {e}") return [{"link": None, "text": "No information found in the web search results."}] def respond( message, history: list[tuple[str, str]], temperature, top_p, repetition_penalty, max_tokens, search_engine ): model = get_model(temperature, top_p, repetition_penalty) # Perform web search if search_engine == "Google": search_results = google_search(message) else: search_results = duckduckgo_search(message, max_results=5) # Check if we have a FAISS database if os.path.exists("faiss_database"): embed = get_embeddings() database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) retriever = database.as_retriever() relevant_docs = retriever.get_relevant_documents(message) context_str = "\n".join([doc.page_content for doc in relevant_docs]) # Use the context in the prompt prompt_template = f""" Answer the question based on the following context and web search results: Context from documents: {context_str} Web Search Results: {{search_results}} Question: {{message}} If the context and web search results don't contain relevant information, state that the information is not available. Provide a concise and direct answer to the question. """ else: prompt_template = """ Answer the question based on the following web search results: Web Search Results: {search_results} Question: {message} If the web search results don't contain relevant information, state that the information is not available. Provide a concise and direct answer to the question. """ prompt = PromptTemplate( input_variables=["search_results", "message"], template=prompt_template ) chain = LLMChain(llm=model, prompt=prompt) search_results_text = "\n".join([f"- {result['text']}" for result in search_results if result['text']]) response = chain.run(search_results=search_results_text, message=message) # Add sources sources = set(result["link"] for result in search_results if result["link"]) sources_section = "\n\nSources:\n" + "\n".join(f"- {source}" for source in sources) response += sources_section # Update history and return history.append((message, response)) return history # Gradio interface demo = gr.Blocks() with demo: gr.Markdown("# Chat with your PDF documents and Web Search") with gr.Row(): file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"]) update_button = gr.Button("Upload PDF") update_output = gr.Textbox(label="Update Status") update_button.click(update_vectors, inputs=[file_input], outputs=update_output) with gr.Row(): with gr.Column(scale=2): chatbot = gr.Chatbot(label="Conversation") message_input = gr.Textbox(label="Enter your message") submit_button = gr.Button("Submit") with gr.Column(scale=1): temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature") top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p") repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty") max_tokens = gr.Slider(minimum=1, maximum=1000, value=500, step=1, label="Max tokens") search_engine = gr.Dropdown(["DuckDuckGo", "Google"], value="DuckDuckGo", label="Search Engine") submit_button.click( respond, inputs=[ message_input, gr.State([]), # Initialize empty history temperature, top_p, repetition_penalty, max_tokens, search_engine ], outputs=[chatbot] ) clear_button = gr.Button("Clear Cache") clear_output = gr.Textbox(label="Cache Status") clear_button.click(clear_cache, inputs=[], outputs=clear_output) if __name__ == "__main__": demo.launch()