import fitz # PyMuPDF import gradio as gr import requests from bs4 import BeautifulSoup import urllib.parse import random import os from dotenv import load_dotenv load_dotenv() # Load environment variables from .env file # Now replace the hard-coded token with the environment variable HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_TOKEN") _useragent_list = [ "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", ] # Function to extract visible text from HTML content of a webpage def extract_text_from_webpage(html): print("Extracting text from webpage...") soup = BeautifulSoup(html, 'html.parser') for script in soup(["script", "style"]): script.extract() # Remove scripts and styles text = soup.get_text() lines = (line.strip() for line in text.splitlines()) chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) text = '\n'.join(chunk for chunk in chunks if chunk) print(f"Extracted text length: {len(text)}") return text # Function to perform a Google search and retrieve results def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None): """Performs a Google search and returns the results.""" print(f"Searching for term: {term}") escaped_term = urllib.parse.quote_plus(term) start = 0 all_results = [] max_chars_per_page = 8000 # Limit the number of characters from each webpage to stay under the token limit with requests.Session() as session: while start < num_results: print(f"Fetching search results starting from: {start}") try: # Choose a random user agent user_agent = random.choice(_useragent_list) headers = { 'User-Agent': user_agent } print(f"Using User-Agent: {headers['User-Agent']}") resp = session.get( url="https://www.google.com/search", headers=headers, params={ "q": term, "num": num_results - start, "hl": lang, "start": start, "safe": safe, }, timeout=timeout, verify=ssl_verify, ) resp.raise_for_status() except requests.exceptions.RequestException as e: print(f"Error fetching search results: {e}") break soup = BeautifulSoup(resp.text, "html.parser") result_block = soup.find_all("div", attrs={"class": "g"}) if not result_block: print("No more results found.") break for result in result_block: link = result.find("a", href=True) if link: link = link["href"] print(f"Found link: {link}") try: webpage = session.get(link, headers=headers, timeout=timeout) webpage.raise_for_status() visible_text = extract_text_from_webpage(webpage.text) if len(visible_text) > max_chars_per_page: visible_text = visible_text[:max_chars_per_page] + "..." all_results.append({"link": link, "text": visible_text}) except requests.exceptions.RequestException as e: print(f"Error fetching or processing {link}: {e}") all_results.append({"link": link, "text": None}) else: print("No link found in result.") all_results.append({"link": None, "text": None}) start += len(result_block) print(f"Total results fetched: {len(all_results)}") return all_results # Function to format the prompt for the Hugging Face API def format_prompt(query, search_results, instructions): formatted_results = "" for result in search_results: link = result["link"] text = result["text"] if link: formatted_results += f"URL: {link}\nContent: {text}\n{'-'*80}\n" else: formatted_results += "No link found.\n" + '-'*80 + '\n' prompt = f"{instructions}User Query: {query}\n\nWeb Search Results:\n{formatted_results}\n\nAssistant:" return prompt # Function to generate text using Hugging Face API def generate_text(input_text, temperature=0.7, repetition_penalty=1.0, top_p=0.9): print("Generating text using Hugging Face API...") endpoint = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3" headers = { "Authorization": f"Bearer {HUGGINGFACE_API_TOKEN}", # Use the environment variable "Content-Type": "application/json" } data = { "inputs": input_text, "parameters": { "max_new_tokens": 4000, # Adjust as needed "temperature": temperature, "repetition_penalty": repetition_penalty, "top_p": top_p } } try: response = requests.post(endpoint, headers=headers, json=data) response.raise_for_status() # Check if response is JSON try: json_data = response.json() except ValueError: print("Response is not JSON.") return None # Extract generated text from response JSON if isinstance(json_data, list): # Handle list response (if applicable for your use case) generated_text = json_data[0].get("generated_text") if json_data else None elif isinstance(json_data, dict): # Handle dictionary response generated_text = json_data.get("generated_text") else: print("Unexpected response format.") return None if generated_text is not None: print("Text generation complete using Hugging Face API.") print(f"Generated text: {generated_text}") # Debugging line return generated_text else: print("Generated text not found in response.") return None except requests.exceptions.RequestException as e: print(f"Error generating text using Hugging Face API: {e}") return None # Function to read and extract text from a PDF def read_pdf(file_obj): with fitz.open(file_obj.name) as document: text = "" for page_num in range(document.page_count): page = document.load_page(page_num) text += page.get_text() return text # Function to format the prompt with instructions for text generation def format_prompt_with_instructions(text, instructions): prompt = f"{instructions}{text}\n\nAssistant:" return prompt # Function to save text to a PDF def save_text_to_pdf(text, output_path): print(f"Saving text to PDF at {output_path}...") doc = fitz.open() # Create a new PDF document page = doc.new_page() # Create a new page # Set the page margins margin = 50 # 50 points margin page_width = page.rect.width page_height = page.rect.height text_width = page_width - 2 * margin text_height = page_height - 2 * margin # Define font size and line spacing font_size = 9 line_spacing = 1 * font_size fontname = "times-roman" # Use a supported font name # Process the text to handle line breaks and paragraphs paragraphs = text.split("\n") # Split text into paragraphs y_position = margin for paragraph in paragraphs: words = paragraph.split() current_line = "" for word in words: word = str(word) # Ensure word is treated as string # Calculate the length of the current line plus the new word current_line_length = fitz.get_text_length(current_line + " " + word, fontsize=font_size, fontname=fontname) if current_line_length <= text_width: current_line += " " + word else: page.insert_text(fitz.Point(margin, y_position), current_line.strip(), fontsize=font_size, fontname=fontname) y_position += line_spacing if y_position + line_spacing > page_height - margin: page = doc.new_page() # Add a new page if text exceeds page height y_position = margin current_line = word # Add the last line of the paragraph page.insert_text(fitz.Point(margin, y_position), current_line.strip(), fontsize=font_size, fontname=fontname) y_position += line_spacing # Add extra space for new paragraph y_position += line_spacing if y_position + line_spacing > page_height - margin: page = doc.new_page() # Add a new page if text exceeds page height y_position = margin doc.save(output_path) # Save the PDF to the specified path print("PDF saved successfully.") # Integrated function to perform web scraping, formatting, and text generation def scrape_and_display(query, num_results, instructions, web_search=True, temperature=0.7, repetition_penalty=1.0, top_p=0.9): print(f"Scraping and displaying results for query: {query} with num_results: {num_results}") if web_search: search_results = google_search(query, num_results) formatted_prompt = format_prompt(query, search_results, instructions) generated_summary = generate_text(formatted_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) else: formatted_prompt = format_prompt_with_instructions(query, instructions) generated_summary = generate_text(formatted_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) print("Scraping and display complete.") if generated_summary: # Extract and return text starting from "Assistant:" assistant_index = generated_summary.find("Assistant:") if assistant_index != -1: generated_summary = generated_summary[assistant_index:] else: generated_summary = "Assistant: No response generated." print(f"Generated summary: {generated_summary}") # Debugging line return generated_summary # Main Gradio interface function def gradio_interface(query, use_pdf, pdf, num_results, instructions, temperature, repetition_penalty, top_p): if use_pdf and pdf is not None: pdf_text = read_pdf(pdf) generated_summary = scrape_and_display(pdf_text, num_results=0, instructions=instructions, web_search=False, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) else: generated_summary = scrape_and_display(query, num_results=num_results, instructions=instructions, web_search=True, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) # Save the generated summary to a PDF output_pdf_path = "output_summary.pdf" save_text_to_pdf(generated_summary, output_pdf_path) return generated_summary, output_pdf_path # Deploy Gradio Interface gr.Interface( fn=gradio_interface, inputs=[ gr.Textbox(label="Query"), gr.Checkbox(label="Use PDF"), gr.File(label="Upload PDF"), gr.Slider(minimum=1, maximum=20, label="Number of Results"), # Added Slider for num_results gr.Textbox(label="Instructions"), gr.Slider(minimum=0.1, maximum=1.0, step=1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, label="Repetition Penalty"), gr.Slider(minimum=0.1, maximum=1.0, label="Top p") ], outputs=["text", "file"], # Updated to return text and a file title="Financial Analyst AI Assistant", description="Enter your query about a company's financials to get valuable insights. Optionally, upload a PDF for analysis.Please instruct me for curating your output template, also for web search you can modify my search results but its advisable to restrict the same at 10. You can also adjust my parameters like Temperature, Repetition Penalty and Top_P, its adivsable to set repetition penalty at 1 and other two parameters at 0.1.", ).launch(share=True)