# Based on https://github.com/xuebinqin/DIS/blob/main/Colab_Demo.ipynb import os from huggingface_hub import hf_hub_download from PIL import Image import numpy as np import torch from torch.autograd import Variable from torchvision import transforms import torch.nn.functional as F import matplotlib.pyplot as plt device = None ISNetDIS = None normalize = None im_preprocess = None hypar = None net = None def init(): global device, ISNetDIS, normalize, im_preprocess, hypar, net print("Initializing segmenter...") if not os.path.exists("saved_models"): os.mkdir("saved_models") os.mkdir("git") os.system( "git clone https://github.com/xuebinqin/DIS git/xuebinqin/DIS") hf_hub_download(repo_id="NimaBoscarino/IS-Net_DIS-general-use", filename="isnet-general-use.pth", local_dir="saved_models") os.system("rm -r git/xuebinqin/DIS/IS-Net/__pycache__") os.system( "mv git/xuebinqin/DIS/IS-Net/* .") import models import data_loader_cache device = 'cuda' if torch.cuda.is_available() else 'cpu' ISNetDIS = models.ISNetDIS normalize = data_loader_cache.normalize im_preprocess = data_loader_cache.im_preprocess # Set Parameters hypar = {} # paramters for inferencing # load trained weights from this path hypar["model_path"] = "./saved_models" # name of the to-be-loaded weights hypar["restore_model"] = "isnet-general-use.pth" # indicate if activate intermediate feature supervision hypar["interm_sup"] = False # choose floating point accuracy -- # indicates "half" or "full" accuracy of float number hypar["model_digit"] = "full" hypar["seed"] = 0 # cached input spatial resolution, can be configured into different size hypar["cache_size"] = [1024, 1024] # data augmentation parameters --- # mdoel input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images hypar["input_size"] = [1024, 1024] # random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation hypar["crop_size"] = [1024, 1024] hypar["model"] = ISNetDIS() # Build Model net = build_model(hypar, device) class GOSNormalize(object): ''' Normalize the Image using torch.transforms ''' def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]): self.mean = mean self.std = std def __call__(self, image): image = normalize(image, self.mean, self.std) return image transform = transforms.Compose( [GOSNormalize([0.5, 0.5, 0.5], [1.0, 1.0, 1.0])]) def load_image(im_pil, hypar): im = np.array(im_pil) im, im_shp = im_preprocess(im, hypar["cache_size"]) im = torch.divide(im, 255.0) shape = torch.from_numpy(np.array(im_shp)) # make a batch of image, shape return transform(im).unsqueeze(0), shape.unsqueeze(0) def build_model(hypar, device): net = hypar["model"] # GOSNETINC(3,1) # convert to half precision if (hypar["model_digit"] == "half"): net.half() for layer in net.modules(): if isinstance(layer, nn.BatchNorm2d): layer.float() net.to(device) if (hypar["restore_model"] != ""): net.load_state_dict(torch.load( hypar["model_path"]+"/"+hypar["restore_model"], map_location=device)) net.to(device) net.eval() return net def predict(net, inputs_val, shapes_val, hypar, device): ''' Given an Image, predict the mask ''' net.eval() if (hypar["model_digit"] == "full"): inputs_val = inputs_val.type(torch.FloatTensor) else: inputs_val = inputs_val.type(torch.HalfTensor) inputs_val_v = Variable(inputs_val, requires_grad=False).to( device) # wrap inputs in Variable ds_val = net(inputs_val_v)[0] # list of 6 results # B x 1 x H x W # we want the first one which is the most accurate prediction pred_val = ds_val[0][0, :, :, :] # recover the prediction spatial size to the orignal image size pred_val = torch.squeeze(F.upsample(torch.unsqueeze( pred_val, 0), (shapes_val[0][0], shapes_val[0][1]), mode='bilinear')) ma = torch.max(pred_val) mi = torch.min(pred_val) pred_val = (pred_val-mi)/(ma-mi) # max = 1 if device == 'cuda': torch.cuda.empty_cache() # it is the mask we need return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) def segment(image): image_tensor, orig_size = load_image(image, hypar) mask = predict(net, image_tensor, orig_size, hypar, device) mask = Image.fromarray(mask).convert('L') im_rgb = image.convert("RGB") cropped = im_rgb.copy() cropped.putalpha(mask) return [cropped, mask]