import argparse import platform import sys import time from pathlib import Path import pandas as pd FILE = Path(__file__).resolve() ROOT = FILE.parents[0] # YOLO root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH # ROOT = ROOT.relative_to(Path.cwd()) # relative import export from models.experimental import attempt_load from models.yolo import SegmentationModel from segment.val import run as val_seg from utils import notebook_init from utils.general import LOGGER, check_yaml, file_size, print_args from utils.torch_utils import select_device from val import run as val_det def run( weights=ROOT / 'yolo.pt', # weights path imgsz=640, # inference size (pixels) batch_size=1, # batch size data=ROOT / 'data/coco.yaml', # dataset.yaml path device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu half=False, # use FP16 half-precision inference test=False, # test exports only pt_only=False, # test PyTorch only hard_fail=False, # throw error on benchmark failure ): y, t = [], time.time() device = select_device(device) model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc. for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU) try: assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML if 'cpu' in device.type: assert cpu, 'inference not supported on CPU' if 'cuda' in device.type: assert gpu, 'inference not supported on GPU' # Export if f == '-': w = weights # PyTorch format else: w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # all others assert suffix in str(w), 'export failed' # Validate if model_type == SegmentationModel: result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half) metric = result[0][7] # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls)) else: # DetectionModel: result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half) metric = result[0][3] # (p, r, map50, map, *loss(box, obj, cls)) speed = result[2][1] # times (preprocess, inference, postprocess) y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) # MB, mAP, t_inference except Exception as e: if hard_fail: assert type(e) is AssertionError, f'Benchmark --hard-fail for {name}: {e}' LOGGER.warning(f'WARNING ⚠️ Benchmark failure for {name}: {e}') y.append([name, None, None, None]) # mAP, t_inference if pt_only and i == 0: break # break after PyTorch # Print results LOGGER.info('\n') parse_opt() notebook_init() # print system info c = ['Format', 'Size (MB)', 'mAP50-95', 'Inference time (ms)'] if map else ['Format', 'Export', '', ''] py = pd.DataFrame(y, columns=c) LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)') LOGGER.info(str(py if map else py.iloc[:, :2])) if hard_fail and isinstance(hard_fail, str): metrics = py['mAP50-95'].array # values to compare to floor floor = eval(hard_fail) # minimum metric floor to pass assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: mAP50-95 < floor {floor}' return py def test( weights=ROOT / 'yolo.pt', # weights path imgsz=640, # inference size (pixels) batch_size=1, # batch size data=ROOT / 'data/coco128.yaml', # dataset.yaml path device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu half=False, # use FP16 half-precision inference test=False, # test exports only pt_only=False, # test PyTorch only hard_fail=False, # throw error on benchmark failure ): y, t = [], time.time() device = select_device(device) for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable) try: w = weights if f == '-' else \ export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # weights assert suffix in str(w), 'export failed' y.append([name, True]) except Exception: y.append([name, False]) # mAP, t_inference # Print results LOGGER.info('\n') parse_opt() notebook_init() # print system info py = pd.DataFrame(y, columns=['Format', 'Export']) LOGGER.info(f'\nExports complete ({time.time() - t:.2f}s)') LOGGER.info(str(py)) return py def parse_opt(): parser = argparse.ArgumentParser() parser.add_argument('--weights', type=str, default=ROOT / 'yolo.pt', help='weights path') parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)') parser.add_argument('--batch-size', type=int, default=1, help='batch size') parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') parser.add_argument('--test', action='store_true', help='test exports only') parser.add_argument('--pt-only', action='store_true', help='test PyTorch only') parser.add_argument('--hard-fail', nargs='?', const=True, default=False, help='Exception on error or < min metric') opt = parser.parse_args() opt.data = check_yaml(opt.data) # check YAML print_args(vars(opt)) return opt def main(opt): test(**vars(opt)) if opt.test else run(**vars(opt)) if __name__ == "__main__": opt = parse_opt() main(opt)