# YOLOv3 # Parameters nc: 80 # number of classes depth_multiple: 1.0 # model depth multiple width_multiple: 1.0 # layer channel multiple anchors: - [10,13, 16,30, 33,23] # P3/8 - [30,61, 62,45, 59,119] # P4/16 - [116,90, 156,198, 373,326] # P5/32 # darknet53 backbone backbone: # [from, number, module, args] [[-1, 1, Conv, [32, 3, 1]], # 0 [-1, 1, Conv, [64, 3, 2]], # 1-P1/2 [-1, 1, Bottleneck, [64]], [-1, 1, Conv, [128, 3, 2]], # 3-P2/4 [-1, 2, Bottleneck, [128]], [-1, 1, Conv, [256, 3, 2]], # 5-P3/8 [-1, 8, Bottleneck, [256]], [-1, 1, Conv, [512, 3, 2]], # 7-P4/16 [-1, 8, Bottleneck, [512]], [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32 [-1, 4, Bottleneck, [1024]], # 10 ] # YOLOv3 head head: [[-1, 1, Bottleneck, [1024, False]], [-1, 1, Conv, [512, 1, 1]], [-1, 1, Conv, [1024, 3, 1]], [-1, 1, Conv, [512, 1, 1]], [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large) [-2, 1, Conv, [256, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 8], 1, Concat, [1]], # cat backbone P4 [-1, 1, Bottleneck, [512, False]], [-1, 1, Bottleneck, [512, False]], [-1, 1, Conv, [256, 1, 1]], [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium) [-2, 1, Conv, [128, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 6], 1, Concat, [1]], # cat backbone P3 [-1, 1, Bottleneck, [256, False]], [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small) [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) ]