import gradio as gr from PIL import Image import numpy as np import os import uuid def inference(input_img): temp = uuid.uuid4() shell = f"python yolov9/detect.py --source {input_img} --img 640 --device cpu --weights yolov9/runs/train/exp/weights/best.pt --name {temp}" os.system(shell) return f"yolov9/runs/detect/{temp}/{input_img.split('/')[-1]}" def inference_video(input_img): org_img = input_img return input_img with gr.Blocks() as demo: gr.Markdown( """ # Vehicle detection using Yolo-v9 Upload the vehicle image or video for detection """ ) with gr.Tab("Video"): gr.Markdown( """ Upload video mp4 file and detect the count of vehicles passing by """ ) gr.Markdown( """ Upload image file and detect vehicles present in the image """ ) with gr.Row(): img_input = [gr.Video(label="Input Image",width=300, height=300)] pred_outputs = [gr.Video(label="Output Image",width=300, height=300)] image_button = gr.Button("Predict") image_button.click(inference, inputs=img_input, outputs=pred_outputs) with gr.Tab("Image"): gr.Markdown( """ Upload image file and detect vehicles present in the image """ ) with gr.Row(): img_input = [gr.Image(type="filepath",label="Input Image",width=300, height=300)] pred_outputs = [gr.Image(label="Output Image",width=640, height=640)] image_button = gr.Button("Predict") image_button.click(inference, inputs=img_input, outputs=pred_outputs) demo.launch(share=True)