import torch import gradio as gr from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer ,pipeline, BitsAndBytesConfig config = PeftConfig.from_pretrained("ShishuTripathi/entity_coder") model = AutoModelForCausalLM.from_pretrained("ybelkada/falcon-7b-sharded-bf16",trust_remote_code=True) model = PeftModel.from_pretrained(model,"ShishuTripathi/entity_coder") tokenizer = AutoTokenizer.from_pretrained("ShishuTripathi/entity_coder") generator = pipeline('text-generation' , model = model, tokenizer =tokenizer, max_length = 50) def text_generation(input_text): prompt = f"### Narrative: {input_text} \n ### Reported Term:" out = generator(prompt) output = out[0]['generated_text'].replace('|endoftext|',' ').strip() return output title = "Preferred Term Extractor and Coder" description = "The term used to describe an adverse event in the Database of Adverse Event Notifications - medicines is the MedDRA 'preferred term', which describes a single medical concept" gr.Interface( text_generation, [gr.inputs.Textbox(lines=2, label="Enter Narrative or Phrase")], [gr.outputs.Textbox(type="text", label="Extracted Preffered Term")], title=title, description=description, theme="huggingface" ).launch()