import subprocess import os if os.getenv('SYSTEM') == 'spaces': subprocess.call('pip install -U openmim'.split()) subprocess.call('pip install python-dotenv'.split()) subprocess.call('pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113'.split()) subprocess.call('mim install mmcv>=2.0.0'.split()) subprocess.call('mim install mmengine'.split()) subprocess.call('mim install mmdet'.split()) subprocess.call('pip install opencv-python-headless==4.5.5.64'.split()) subprocess.call('pip install git+https://github.com/cocodataset/panopticapi.git'.split()) import gradio as gr from huggingface_hub import snapshot_download import cv2 import dotenv dotenv.load_dotenv() import numpy as np import gradio as gr import glob from inference import inference_frame,inference_frame_serial from inference import inference_frame_par_ready from inference import process_frame import os import pathlib import multiprocessing as mp from time import time REPO_ID='SharkSpace/videos_examples' snapshot_download(repo_id=REPO_ID, token=os.environ.get('SHARK_MODEL'),repo_type='dataset',local_dir='videos_example') def process_video(input_video): cap = cv2.VideoCapture(input_video) output_path = "output.mp4" fps = int(cap.get(cv2.CAP_PROP_FPS)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) video = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height)) iterating, frame = cap.read() while iterating: # flip frame vertically display_frame = inference_frame_serial(frame) video.write(frame) yield display_frame, None iterating, frame = cap.read() video.release() yield display_frame, output_path with gr.Blocks() as demo: with gr.Row(): input_video = gr.Video(label="input") processed_frames = gr.Image(label="last frame") output_video = gr.Video(label="output") with gr.Row(): paths = sorted(pathlib.Path('videos_example/').rglob('*.mp4')) samples=[[path.as_posix()] for path in paths if 'raw_videos' in str(path)] examples = gr.Examples(samples, inputs=input_video) process_video_btn = gr.Button("process video") process_video_btn.click(process_video, input_video, [processed_frames, output_video]) demo.queue() demo.launch()