import whisper import os import librosa import torch from transformers import pipeline def transcribe_audio_raw(file_path: str) -> str: # file_path = "C:/Users/Lenovo/ML Notebooks/ERP Assistant/example.wav" # if not os.path.exists(file_path): # print(f"File not found: {file_path}") # else: # print("File found!") # audio_data, sr = librosa.load(file_path, sr=None) whisper_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-tiny.en", device="cpu") transcription = whisper_pipe(file_path) print(transcription) return transcription['text'] import tempfile def transcribe_audio(uploaded_file): with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file: temp_file.write(uploaded_file.read()) file_path = temp_file.name whisper_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-tiny.en", device="cpu") transcription = whisper_pipe(file_path) return transcription['text']