import whisper # You can choose your model from - see it on readme file and update the modelname modelname = "tiny.en" model = whisper.load_model(modelname) import gradio as gr import time def SpeechToText(audio): if audio is None: return "", "" time.sleep(1) audio = whisper.load_audio(audio) audio = whisper.pad_or_trim(audio) # make log-Mel spectrogram and move to the same device as the model mel = whisper.log_mel_spectrogram(audio).to(model.device) # Detect the Max probability of language ? # _, probs = model.detect_language(mel) # language = max(probs, key=probs.get) language = "Unknown" # Decode audio to Text options = whisper.DecodingOptions(fp16 = False) result = whisper.decode(model, mel, options) return language, result.text print("Starting the Gradio Web UI") gr.Interface( title = 'OpenAI Whisper implementation on Gradio Web UI', fn=SpeechToText, inputs=[ gr.Audio(source="microphone", type="filepath") ], outputs=[ "label", "textbox", ], live=True ).launch( debug=False, )