import gradio as gr from diffusers import DiffusionPipeline import torch # Load the pipeline pipeline = DiffusionPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16) pipeline = pipeline.to("cuda" if torch.cuda.is_available() else "cpu") def generate_image(prompt): # Generate image using the prompt output = pipeline(prompt) return output.images[0] # Set up Gradio interface interface = gr.Interface( fn=generate_image, inputs=gr.Textbox(label="Prompt"), outputs=gr.Image(label="Generated Image"), title="Shap-E Image Generation", description="Generate images from text prompts using the Shap-E diffusion model." ) if __name__ == "__main__": interface.launch()