# -*- coding: utf-8 -*- """ Created on Sat Oct 5 16:41:22 2024 @author: Admin """ import gradio as gr from transformers import pipeline import os from huggingface_hub import login from transformers import AutoModelForCausalLM, AutoTokenizer import torch #chatbot = pipeline(model="NCSOFT/Llama-3-OffsetBias-8B") #token = os.getenv("HF_TOKEN") login(token = os.getenv('HF_TOKEN')) #chatbot = pipeline(model="meta-llama/Llama-3.2-1B") tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B-Instruct") model = AutoModelForCausalLM.from_pretrained( "meta-llama/Llama-3.2-1B-Instruct", device_map="auto", torch_dtype="auto", ) #chatbot = pipeline(model="facebook/blenderbot-400M-distill") message_list = [] response_list = [] def vanilla_chatbot(message, history): inputs = tokenizer(message, return_tensors="pt").to("cpu") with torch.no_grad(): outputs = model.generate(inputs.input_ids, max_length=100) return tokenizer.decode(outputs[0], skip_special_tokens=True) #conversation = chatbot(message) #return conversation[0]['generated_text'] demo_chatbot = gr.ChatInterface(vanilla_chatbot, title="Vanilla Chatbot", description="Enter text to start chatting.") demo_chatbot.launch(True)