import os import gradio as gr import json import logging import torch from PIL import Image import spaces from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images from huggingface_hub import HfFileSystem, ModelCard import copy import random import time from huggingface_hub import login hf_token = os.environ.get("HF_TOKEN_GATED") login(token=hf_token) # Load LoRAs from JSON file with open('loras.json', 'r') as f: loras = json.load(f) # Initialize the base model dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" base_model = "black-forest-labs/FLUX.1-dev" taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device) pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device) MAX_SEED = 2**32-1 pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) class calculateDuration: def __init__(self, activity_name=""): self.activity_name = activity_name def __enter__(self): self.start_time = time.time() return self def __exit__(self, exc_type, exc_value, traceback): self.end_time = time.time() self.elapsed_time = self.end_time - self.start_time if self.activity_name: print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") else: print(f"Elapsed time: {self.elapsed_time:.6f} seconds") def update_selection(evt: gr.SelectData, width, height): selected_lora = loras[evt.index] new_placeholder = f"Type a prompt for {selected_lora['title']}" lora_repo = selected_lora["repo"] updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨" if "aspect" in selected_lora: if selected_lora["aspect"] == "portrait": width = 768 height = 1024 elif selected_lora["aspect"] == "landscape": width = 1024 height = 768 else: width = 1024 height = 1024 return ( gr.update(placeholder=new_placeholder), updated_text, evt.index, width, height, ) @spaces.GPU(duration=70) def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress): pipe.to("cuda") generator = torch.Generator(device="cuda").manual_seed(seed) with calculateDuration("Generating image"): # Generate image for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( prompt=prompt_mash, num_inference_steps=steps, guidance_scale=cfg_scale, width=width, height=height, generator=generator, joint_attention_kwargs={"scale": lora_scale}, output_type="pil", good_vae=good_vae, ): yield img def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)): if selected_index is None: raise gr.Error("You must select a LoRA before proceeding.") selected_lora = loras[selected_index] lora_path = selected_lora["repo"] trigger_word = selected_lora["trigger_word"] if(trigger_word): if "trigger_position" in selected_lora: if selected_lora["trigger_position"] == "prepend": prompt_mash = f"{trigger_word} {prompt}" else: prompt_mash = f"{prompt} {trigger_word}" else: prompt_mash = f"{trigger_word} {prompt}" else: prompt_mash = prompt with calculateDuration("Unloading LoRA"): pipe.unload_lora_weights() # Load LoRA weights with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"): if "weights" in selected_lora: pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"]) else: pipe.load_lora_weights(lora_path) # Set random seed for reproducibility with calculateDuration("Randomizing seed"): if randomize_seed: seed = random.randint(0, MAX_SEED) image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress) # Consume the generator to get the final image final_image = None step_counter = 0 for image in image_generator: step_counter+=1 final_image = image progress_bar = f'
' yield image, seed, gr.update(value=progress_bar, visible=True) yield final_image, seed, gr.update(value=progress_bar, visible=False) run_lora.zerogpu = True css = ''' #gen_btn{height: 100%} #title{text-align: center} #title h1{font-size: 3em; display:inline-flex; align-items:center} #title img{width: 100px; margin-right: 0.5em} #gallery .grid-wrap{height: 10vh} #lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%} .card_internal{display: flex;height: 100px;margin-top: .5em} .card_internal img{margin-right: 1em} .styler{--form-gap-width: 0px !important} #progress{height:30px} #progress .generating{display:none} .progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px} .progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out} ''' with gr.Blocks(theme=gr.themes.Soft(), css=css) as app: title = gr.HTML( """

LoRA FLUX LoRA Gallery from Shakker AI

""", elem_id="title", ) selected_index = gr.State(None) with gr.Row(): with gr.Column(scale=3): prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA") with gr.Column(scale=1, elem_id="gen_column"): generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn") with gr.Row(): with gr.Column(): selected_info = gr.Markdown("") gallery = gr.Gallery( [(item["image"], item["title"]) for item in loras], label="LoRA Gallery", allow_preview=False, columns=3, elem_id="gallery" ) with gr.Column(): progress_bar = gr.Markdown(elem_id="progress",visible=False) result = gr.Image(label="Generated Image") with gr.Row(): with gr.Accordion("Advanced Settings", open=False): with gr.Column(): with gr.Row(): cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5) steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28) with gr.Row(): width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) with gr.Row(): randomize_seed = gr.Checkbox(True, label="Randomize seed") seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95) gallery.select( update_selection, inputs=[width, height], outputs=[prompt, selected_info, selected_index, width, height] ) gr.on( triggers=[generate_button.click, prompt.submit], fn=run_lora, inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale], outputs=[result, seed, progress_bar] ) app.queue() app.launch()