import streamlit as st from openai import OpenAI import random import tensorflow as tf import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder, StandardScaler from keras.preprocessing import image # Initialize the OpenAI client client = OpenAI( api_key="715d7f1ce56d4c1abb3a803e77ffae87", base_url="https://api.aimlapi.com", ) client_solar = OpenAI( api_key="up_g41Ecn1SmjMBCwzVrsNX5lP6kVb5i", base_url="https://api.upstage.ai/v1/solar" ) # Load your pre-trained crop disease model model_disease = tf.keras.models.load_model('crop_disease_model.h5') # Update with your model path # Load your pre-trained crop recommendation model model_recommendation = tf.keras.models.load_model('crop_recommendation_model.h5') # Load the dataset for crop recommendation dataset = pd.read_csv('Crop_recommendation.csv') # Features and labels for recommendation system X = dataset[['temperature', 'humidity', 'ph', 'water availability', 'season']].copy() y = dataset['label'] # Encode the 'season' and 'label' columns label_encoder_season = LabelEncoder() label_encoder_season.fit(X['season']) label_encoder_crop = LabelEncoder() label_encoder_crop.fit(y) # Scale the features scaler = StandardScaler() X_scaled = scaler.fit_transform( X[['temperature', 'humidity', 'ph', 'water availability', 'season']].replace( label_encoder_season.classes_, label_encoder_season.transform(label_encoder_season.classes_) ) ) # List of short responses for non-crop-related questions non_crop_responses = [ "I'm here to assist with crop-related inquiries. Please ask about crops or agriculture.", "For crop-related questions, I'm your go-to assistant. Ask me about crops!", "Let's stick to crop and agriculture questions. How can I assist you with those?", "I specialize in crops and agriculture. Ask me anything related to these topics!", "Please ask about crops or farming practices. I can help with that!" ] # A function to check if the prompt is related to crops or agriculture def is_crop_related(prompt): crop_keywords = ['crop', 'plant', 'disease', 'farm', 'agriculture', 'soil', 'fertilizer', 'pesticide', 'harvest', 'irrigation', 'seed'] prompt = prompt.lower() return any(keyword in prompt for keyword in crop_keywords) # Function to get the AI response def get_chat_response(prompt, crop_related=True): if crop_related: system_message = ( "You are CropGuard, an AI assistant specialized in crop management, " "crop diseases, healthy plant practices, and crop-related advice. " "You will only answer questions related to crops and agriculture." ) else: return random.choice(non_crop_responses) response = client.chat.completions.create( model="meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo", messages=[ {"role": "system", "content": system_message}, {"role": "user", "content": prompt} ], max_tokens=1500 ) message = response.choices[0].message.content return message # Define function to predict disease from image def predict_disease(img_path): img = image.load_img(img_path, target_size=(150, 150)) img_array = image.img_to_array(img) img_array = np.expand_dims(img_array, axis=0) / 255.0 # Normalize the image predictions = model_disease.predict(img_array) predicted_class = np.argmax(predictions, axis=1) return predicted_class[0] # Return the predicted class index # Define function to get information about a disease def get_disease_info(disease_name): response = client.chat.completions.create( model="meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo", messages=[ {"role": "system", "content": "You are an expert on crop diseases and agriculture."}, {"role": "user", "content": f"Provide comprehensive details about {disease_name}. Include introduction, causes, prevention methods, danger level, recommended pesticides, and any images if available."} ], max_tokens=2000 ) return response.choices[0].message.content # Define function to get advice for healthy crops def get_healthy_advice(): response = client.chat.completions.create( model="meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo", messages=[ {"role": "system", "content": "You are an expert on crop care and agriculture."}, {"role": "user", "content": "My crop is healthy. How can I ensure it remains healthy and prevent diseases?"} ], max_tokens=1000 ) return response.choices[0].message.content # Define function to handle form submission for the chat system def handle_submit(user_input): if user_input: st.session_state.messages.append({"role": "user", "content": user_input}) # Check if the input is crop-related crop_related = is_crop_related(user_input) # Get AI response response = get_chat_response(user_input, crop_related) # Add AI response to session state st.session_state.messages.append({"role": "assistant", "content": response}) # Define function to predict crop recommendation def predict_crop(temp, hum, ph, water, season): # Encode the season input season_encoded = label_encoder_season.transform([season])[0] # Prepare the input array user_input = np.array([[temp, hum, ph, water, season_encoded]]) # Scale the input user_input_scaled = scaler.transform(user_input) # Make prediction prediction = model_recommendation.predict(user_input_scaled) # Get the predicted class with the highest probability predicted_class = np.argmax(prediction, axis=1) # Decode the predicted class back to crop label predicted_crop = label_encoder_crop.inverse_transform(predicted_class) return predicted_crop[0] # Main Streamlit app function def main(): st.sidebar.title("Navigation") selection = st.sidebar.radio("Go to", ["Crop Disease Prediction", "Chat with CropGuard", "Crop Recommendation"]) if selection == "Crop Disease Prediction": st.title("CropGuard: You Crop Disease Prediction AI Agent") # Image uploader uploaded_file = st.file_uploader("Upload an image of your crop", type=["jpg", "png", "jpeg"]) # Label dictionary for the diseases # Updated label dictionary with all disease classes label_dict = { 0: 'bacterial_blight in Cotton', 1: 'Corn___Northern_Leaf_Blight', 2: 'RedRust sugarcane', 3: 'Grape___healthy', 4: 'Healthy Maize', 5: 'Orange___Haunglongbing_(Citrus_greening)', 6: 'Wheat___Yellow_Rust', 7: 'Pepper__bell___Bacterial_spot', 8: 'Tungro', 9: 'Soybean___healthy', 10: 'Wheat mite', 11: 'Anthracnose on Cotton', 12: 'Healthy Wheat', 13: 'Squash___Powdery_mildew', 14: 'Cotton Aphid', 15: 'Common_Rust', 16: 'Background_without_leaves', 17: 'Potato___healthy', 18: 'American Bollworm on Cotton', 19: 'fresh cotton plant', 20: 'Tomato_Leaf_Mold', 21: 'Yellow Rust Sugarcane', 22: 'Flag Smut', 23: 'Tomato__Tomato_YellowLeaf__Curl_Virus', 24: 'Corn___healthy', 25: 'fresh cotton leaf', 26: 'Wheat scab', 27: 'Strawberry___Leaf_scorch', 28: 'Army worm', 29: 'cotton whitefly', 30: 'Peach___healthy', 31: 'Wheat leaf blight', 32: 'Healthy cotton', 33: 'Wilt', 34: 'Tomato_Bacterial_spot', 35: 'bollrot on Cotton', 36: 'Apple___Apple_scab', 37: 'Rice Blast', 38: 'Becterial Blight in Rice', 39: 'Tomato_Septoria_leaf_spot', 40: 'Tomato_healthy', 41: 'diseased cotton plant', 42: 'cotton mealy bug', 43: 'maize ear rot', 44: 'Tomato_Spider_mites_Two_spotted_spider_mite', 45: 'Tomato_Early_blight', 46: 'Apple___Black_rot', 47: 'Wheat Stem fly', 48: 'Blueberry___healthy', 49: 'Cherry___Powdery_mildew', 50: 'Peach___Bacterial_spot', 51: 'Tomato__Target_Spot', 52: 'Apple___Cedar_apple_rust', 53: 'Tomato___Target_Spot', 54: 'Mosaic sugarcane', 55: 'Sugarcane Healthy', 56: 'Pepper__bell___healthy', 57: 'red cotton bug', 58: 'Pepper,_bell___healthy', 59: 'Grape___Leaf_blight_(Isariopsis_Leaf_Spot)', 60: 'Potato___Late_blight', 61: 'Corn___Cercospora_leaf_spot Gray_leaf_spot', 62: 'maize stem borer', 63: 'Brownspot', 64: 'bollworm on Cotton', 65: 'pink bollworm in cotton', 66: 'Strawberry___healthy', 67: 'Leaf Curl', 68: 'Corn___Common_rust', 69: 'Apple___healthy', 70: 'Grape___Black_rot', 71: 'Wheat aphid', 72: 'Tomato_Late_blight', 73: 'diseased cotton leaf', 74: 'Potato___Early_blight', 75: 'maize fall armyworm', 76: 'Wheat Brown leaf Rust', 77: 'Leaf smut', 78: 'Grape___Esca_(Black_Measles)', 79: 'Wheat black rust', 80: 'Raspberry___healthy', 81: 'thirps on cotton', 82: 'Tomato__Tomato_mosaic_virus', 83: 'Cherry___healthy', 84: 'RedRot sugarcane', 85: 'Tomato___Spider_mites Two-spotted_spider_mite', 86: 'Pepper,_bell___Bacterial_spot', 87: 'Gray_Leaf_Spot', 88: 'Wheat powdery mildew' } # The rest of the code remains the same if uploaded_file is not None: # Save the uploaded file with open("temp_image.jpg", "wb") as f: f.write(uploaded_file.getbuffer()) # Display the image in the center st.markdown("
", unsafe_allow_html=True) st.image("temp_image.jpg", caption='Uploaded Image', width=256) st.markdown("
", unsafe_allow_html=True) # Predict disease predicted_class = predict_disease("temp_image.jpg") predicted_disease = label_dict.get(predicted_class, "Unknown") if predicted_disease == "Unknown": st.write("The image does not seem to be of a plant. Please upload a valid image of a crop.") elif "Healthy" in predicted_disease: # Provide advice for healthy crops advice = get_healthy_advice() st.write(f"The crop is healthy: {predicted_disease}") st.write("Best practices to maintain health and prevent diseases:") st.write(advice) else: st.write(f"Predicted Disease: {predicted_disease}") # Fetch detailed information about the disease with st.expander(f"Details about {predicted_disease}"): disease_info = get_disease_info(predicted_disease) st.write(disease_info) elif selection == "Chat with CropGuard": st.title("CropGuard: Discuss about your crops and agriculture") # Initialize session state for messages if not present if "messages" not in st.session_state: st.session_state.messages = [] # Use Streamlit's form to handle input and submission with st.form(key='chat_form', clear_on_submit=True): user_input = st.text_input( "Ask a question (preferably about crops):", key='user_input' ) submit_button = st.form_submit_button(label='Submit') # Call the submit handler when the form is submitted if submit_button and user_input: handle_submit(user_input) # Display the chat history with user input at the top and previous messages below if st.session_state.messages: # Reverse the messages so the latest is on top for i, message in enumerate(reversed(st.session_state.messages)): if message["role"] == "user": st.markdown(f"**You**: {message['content']}") else: st.markdown(f"**CropGuard**: {message['content']}") # Add a separator line between conversations if i < len(st.session_state.messages) - 1: st.markdown("---") elif selection == "Crop Recommendation": st.title("Crop Recommendation System") # Initialize variables with None or empty values temp = st.number_input("Enter the temperature (in Celsius):", value=None) hum = st.number_input("Enter the humidity (in percentage):", value=None) ph = st.number_input("Enter the pH value of the soil:", value=None) water = st.number_input("Enter water availability (in liters/m):", value=None) season = st.selectbox("Select the season:", [''] + list(label_encoder_season.classes_)) # Include an empty option if st.button("Recommend Crop"): # Validate inputs if temp is None or hum is None or ph is None or water is None or season == '': st.error("Please provide values for all fields before requesting a recommendation.") else: # Make the crop recommendation if all inputs are provided recommended_crop = predict_crop(temp, hum, ph, water, season) st.write(f"The recommended crop is: **{recommended_crop}**") if __name__ == "__main__": main()