# adopted from https://github.com/jik876/hifi-gan/blob/master/models.py import torch from torch import nn from torch.nn import Conv1d, ConvTranspose1d from torch.nn import functional as F from torch.nn.utils.parametrizations import weight_norm from torch.nn.utils.parametrize import remove_parametrizations from TTS.utils.io import load_fsspec LRELU_SLOPE = 0.1 def get_padding(k, d): return int((k * d - d) / 2) class ResBlock1(torch.nn.Module): """Residual Block Type 1. It has 3 convolutional layers in each convolutional block. Network:: x -> lrelu -> conv1_1 -> conv1_2 -> conv1_3 -> z -> lrelu -> conv2_1 -> conv2_2 -> conv2_3 -> o -> + -> o |--------------------------------------------------------------------------------------------------| Args: channels (int): number of hidden channels for the convolutional layers. kernel_size (int): size of the convolution filter in each layer. dilations (list): list of dilation value for each conv layer in a block. """ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): super().__init__() self.convs1 = nn.ModuleList( [ weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[2], padding=get_padding(kernel_size, dilation[2]), ) ), ] ) self.convs2 = nn.ModuleList( [ weight_norm( Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1)) ), weight_norm( Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1)) ), weight_norm( Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1)) ), ] ) def forward(self, x): """ Args: x (Tensor): input tensor. Returns: Tensor: output tensor. Shapes: x: [B, C, T] """ for c1, c2 in zip(self.convs1, self.convs2): xt = F.leaky_relu(x, LRELU_SLOPE) xt = c1(xt) xt = F.leaky_relu(xt, LRELU_SLOPE) xt = c2(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs1: remove_parametrizations(l, "weight") for l in self.convs2: remove_parametrizations(l, "weight") class ResBlock2(torch.nn.Module): """Residual Block Type 2. It has 1 convolutional layers in each convolutional block. Network:: x -> lrelu -> conv1-> -> z -> lrelu -> conv2-> o -> + -> o |---------------------------------------------------| Args: channels (int): number of hidden channels for the convolutional layers. kernel_size (int): size of the convolution filter in each layer. dilations (list): list of dilation value for each conv layer in a block. """ def __init__(self, channels, kernel_size=3, dilation=(1, 3)): super().__init__() self.convs = nn.ModuleList( [ weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]), ) ), ] ) def forward(self, x): for c in self.convs: xt = F.leaky_relu(x, LRELU_SLOPE) xt = c(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs: remove_parametrizations(l, "weight") class HifiganGenerator(torch.nn.Module): def __init__( self, in_channels, out_channels, resblock_type, resblock_dilation_sizes, resblock_kernel_sizes, upsample_kernel_sizes, upsample_initial_channel, upsample_factors, inference_padding=5, cond_channels=0, conv_pre_weight_norm=True, conv_post_weight_norm=True, conv_post_bias=True, ): r"""HiFiGAN Generator with Multi-Receptive Field Fusion (MRF) Network: x -> lrelu -> upsampling_layer -> resblock1_k1x1 -> z1 -> + -> z_sum / #resblocks -> lrelu -> conv_post_7x1 -> tanh -> o .. -> zI ---| resblockN_kNx1 -> zN ---' Args: in_channels (int): number of input tensor channels. out_channels (int): number of output tensor channels. resblock_type (str): type of the `ResBlock`. '1' or '2'. resblock_dilation_sizes (List[List[int]]): list of dilation values in each layer of a `ResBlock`. resblock_kernel_sizes (List[int]): list of kernel sizes for each `ResBlock`. upsample_kernel_sizes (List[int]): list of kernel sizes for each transposed convolution. upsample_initial_channel (int): number of channels for the first upsampling layer. This is divided by 2 for each consecutive upsampling layer. upsample_factors (List[int]): upsampling factors (stride) for each upsampling layer. inference_padding (int): constant padding applied to the input at inference time. Defaults to 5. """ super().__init__() self.inference_padding = inference_padding self.num_kernels = len(resblock_kernel_sizes) self.num_upsamples = len(upsample_factors) # initial upsampling layers self.conv_pre = weight_norm(Conv1d(in_channels, upsample_initial_channel, 7, 1, padding=3)) resblock = ResBlock1 if resblock_type == "1" else ResBlock2 # upsampling layers self.ups = nn.ModuleList() for i, (u, k) in enumerate(zip(upsample_factors, upsample_kernel_sizes)): self.ups.append( weight_norm( ConvTranspose1d( upsample_initial_channel // (2**i), upsample_initial_channel // (2 ** (i + 1)), k, u, padding=(k - u) // 2, ) ) ) # MRF blocks self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = upsample_initial_channel // (2 ** (i + 1)) for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): self.resblocks.append(resblock(ch, k, d)) # post convolution layer self.conv_post = weight_norm(Conv1d(ch, out_channels, 7, 1, padding=3, bias=conv_post_bias)) if cond_channels > 0: self.cond_layer = nn.Conv1d(cond_channels, upsample_initial_channel, 1) if not conv_pre_weight_norm: remove_parametrizations(self.conv_pre, "weight") if not conv_post_weight_norm: remove_parametrizations(self.conv_post, "weight") def forward(self, x, g=None): """ Args: x (Tensor): feature input tensor. g (Tensor): global conditioning input tensor. Returns: Tensor: output waveform. Shapes: x: [B, C, T] Tensor: [B, 1, T] """ o = self.conv_pre(x) if hasattr(self, "cond_layer"): o = o + self.cond_layer(g) for i in range(self.num_upsamples): o = F.leaky_relu(o, LRELU_SLOPE) o = self.ups[i](o) z_sum = None for j in range(self.num_kernels): if z_sum is None: z_sum = self.resblocks[i * self.num_kernels + j](o) else: z_sum += self.resblocks[i * self.num_kernels + j](o) o = z_sum / self.num_kernels o = F.leaky_relu(o) o = self.conv_post(o) o = torch.tanh(o) return o @torch.no_grad() def inference(self, c): """ Args: x (Tensor): conditioning input tensor. Returns: Tensor: output waveform. Shapes: x: [B, C, T] Tensor: [B, 1, T] """ c = c.to(self.conv_pre.weight.device) c = torch.nn.functional.pad(c, (self.inference_padding, self.inference_padding), "replicate") return self.forward(c) def remove_weight_norm(self): print("Removing weight norm...") for l in self.ups: remove_parametrizations(l, "weight") for l in self.resblocks: l.remove_weight_norm() remove_parametrizations(self.conv_pre, "weight") remove_parametrizations(self.conv_post, "weight") def load_checkpoint( self, config, checkpoint_path, eval=False, cache=False ): # pylint: disable=unused-argument, redefined-builtin state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) self.load_state_dict(state["model"]) if eval: self.eval() assert not self.training self.remove_weight_norm()