import torch from torch import nn class LayerNorm(nn.Module): def __init__(self, channels, eps=1e-4): """Layer norm for the 2nd dimension of the input. Args: channels (int): number of channels (2nd dimension) of the input. eps (float): to prevent 0 division Shapes: - input: (B, C, T) - output: (B, C, T) """ super().__init__() self.channels = channels self.eps = eps self.gamma = nn.Parameter(torch.ones(1, channels, 1) * 0.1) self.beta = nn.Parameter(torch.zeros(1, channels, 1)) def forward(self, x): mean = torch.mean(x, 1, keepdim=True) variance = torch.mean((x - mean) ** 2, 1, keepdim=True) x = (x - mean) * torch.rsqrt(variance + self.eps) x = x * self.gamma + self.beta return x class LayerNorm2(nn.Module): """Layer norm for the 2nd dimension of the input using torch primitive. Args: channels (int): number of channels (2nd dimension) of the input. eps (float): to prevent 0 division Shapes: - input: (B, C, T) - output: (B, C, T) """ def __init__(self, channels, eps=1e-5): super().__init__() self.channels = channels self.eps = eps self.gamma = nn.Parameter(torch.ones(channels)) self.beta = nn.Parameter(torch.zeros(channels)) def forward(self, x): x = x.transpose(1, -1) x = torch.nn.functional.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) return x.transpose(1, -1) class TemporalBatchNorm1d(nn.BatchNorm1d): """Normalize each channel separately over time and batch.""" def __init__(self, channels, affine=True, track_running_stats=True, momentum=0.1): super().__init__(channels, affine=affine, track_running_stats=track_running_stats, momentum=momentum) def forward(self, x): return super().forward(x.transpose(2, 1)).transpose(2, 1) class ActNorm(nn.Module): """Activation Normalization bijector as an alternative to Batch Norm. It computes mean and std from a sample data in advance and it uses these values for normalization at training. Args: channels (int): input channels. ddi (False): data depended initialization flag. Shapes: - inputs: (B, C, T) - outputs: (B, C, T) """ def __init__(self, channels, ddi=False, **kwargs): # pylint: disable=unused-argument super().__init__() self.channels = channels self.initialized = not ddi self.logs = nn.Parameter(torch.zeros(1, channels, 1)) self.bias = nn.Parameter(torch.zeros(1, channels, 1)) def forward(self, x, x_mask=None, reverse=False, **kwargs): # pylint: disable=unused-argument if x_mask is None: x_mask = torch.ones(x.size(0), 1, x.size(2)).to(device=x.device, dtype=x.dtype) x_len = torch.sum(x_mask, [1, 2]) if not self.initialized: self.initialize(x, x_mask) self.initialized = True if reverse: z = (x - self.bias) * torch.exp(-self.logs) * x_mask logdet = None else: z = (self.bias + torch.exp(self.logs) * x) * x_mask logdet = torch.sum(self.logs) * x_len # [b] return z, logdet def store_inverse(self): pass def set_ddi(self, ddi): self.initialized = not ddi def initialize(self, x, x_mask): with torch.no_grad(): denom = torch.sum(x_mask, [0, 2]) m = torch.sum(x * x_mask, [0, 2]) / denom m_sq = torch.sum(x * x * x_mask, [0, 2]) / denom v = m_sq - (m**2) logs = 0.5 * torch.log(torch.clamp_min(v, 1e-6)) bias_init = (-m * torch.exp(-logs)).view(*self.bias.shape).to(dtype=self.bias.dtype) logs_init = (-logs).view(*self.logs.shape).to(dtype=self.logs.dtype) self.bias.data.copy_(bias_init) self.logs.data.copy_(logs_init)