import math import torch from torch import nn from transformers import GPT2PreTrainedModel from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions class GPT2InferenceModel(GPT2PreTrainedModel): """Override GPT2LMHeadModel to allow for prefix conditioning.""" def __init__(self, config, gpt, pos_emb, embeddings, norm, linear, kv_cache): super().__init__(config) self.transformer = gpt self.pos_embedding = pos_emb self.embeddings = embeddings self.final_norm = norm self.lm_head = nn.Sequential(norm, linear) self.kv_cache = kv_cache def store_prefix_emb(self, prefix_emb): self.cached_prefix_emb = prefix_emb def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs): token_type_ids = kwargs.get("token_type_ids", None) # usually None if not self.kv_cache: past_key_values = None # only last token for inputs_ids if past is defined in kwargs if past_key_values is not None: input_ids = input_ids[:, -1].unsqueeze(-1) if token_type_ids is not None: token_type_ids = token_type_ids[:, -1].unsqueeze(-1) attention_mask = kwargs.get("attention_mask", None) position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values is not None: position_ids = position_ids[:, -1].unsqueeze(-1) else: position_ids = None return { "input_ids": input_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "position_ids": position_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } def forward( self, input_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): assert self.cached_prefix_emb is not None assert inputs_embeds is None # Not supported by this inference model. assert labels is None # Training not supported by this inference model. return_dict = return_dict if return_dict is not None else self.config.use_return_dict # assert len(past_key_values) + len(input_ids) == attention_mask.shape[1] # Create embedding prefix_len = self.cached_prefix_emb.shape[1] if input_ids.shape[1] != 1: gen_inputs = input_ids[:, prefix_len:] gen_emb = self.embeddings(gen_inputs) gen_emb = gen_emb + self.pos_embedding(gen_emb) if self.cached_prefix_emb.shape[0] != gen_emb.shape[0]: prefix_emb = self.cached_prefix_emb.repeat_interleave( gen_emb.shape[0] // self.cached_prefix_emb.shape[0], 0 ) else: prefix_emb = self.cached_prefix_emb.to(gen_emb.dtype) emb = torch.cat([prefix_emb, gen_emb], dim=1) else: emb = self.embeddings(input_ids) emb = emb + self.pos_embedding.get_fixed_embedding( attention_mask.shape[1] - (prefix_len + 1), attention_mask.device ) transformer_outputs = self.transformer( inputs_embeds=emb, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) if not return_dict: return (lm_logits,) + transformer_outputs[1:] return CausalLMOutputWithCrossAttentions( loss=None, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, cross_attentions=transformer_outputs.cross_attentions, ) @staticmethod def _reorder_cache(past, beam_idx): """ This function is used to re-order the :obj:`past_key_values` cache if :meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. """ return tuple( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) for layer_past in past )