import torch from torch import nn from einops import rearrange import torch.nn as nn import torch.nn.functional as F import numpy as np class GELU(nn.Module): def __init__(self): super(GELU, self).__init__() def forward(self, x): return 0.5*x*(1+F.tanh(np.sqrt(2/np.pi)*(x+0.044715*torch.pow(x,3)))) # helpers def pair(t): return t if isinstance(t, tuple) else (t, t) # classes class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.norm = nn.LayerNorm(dim) self.fn = fn def forward(self, x, **kwargs): return self.fn(self.norm(x), **kwargs) class DualPreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.normx = nn.LayerNorm(dim) self.normy = nn.LayerNorm(dim) self.fn = fn def forward(self, x, y, **kwargs): return self.fn(self.normx(x), self.normy(y), **kwargs) class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.Linear(dim, hidden_dim), GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): super().__init__() inner_dim = dim_head * heads project_out = not (heads == 1 and dim_head == dim) self.heads = heads self.scale = dim_head ** -0.5 self.attend = nn.Softmax(dim = -1) self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_k = nn.Linear(dim, inner_dim, bias = False) self.to_v = nn.Linear(dim, inner_dim, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) if project_out else nn.Identity() def forward(self, x, y): # qk = self.to_qk(x).chunk(2, dim = -1) # q = rearrange(self.to_q(x), 'b n (h d) -> b h n d', h = self.heads) # q,k from the zero feature k = rearrange(self.to_k(x), 'b n (h d) -> b h n d', h = self.heads) # v from the reference features v = rearrange(self.to_v(y), 'b n (h d) -> b h n d', h = self.heads) dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale attn = self.attend(dots) out = torch.matmul(attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ DualPreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)), PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)) ])) def forward(self, x, y): # x is the cropped, y is the foreign reference bs,c,h,w = x.size() # img to embedding x = x.view(bs,c,-1).permute(0,2,1) y = y.view(bs,c,-1).permute(0,2,1) for attn, ff in self.layers: x = attn(x, y) + x x = ff(x) + x x = x.view(bs,h,w,c).permute(0,3,1,2) return x class RETURNX(nn.Module): def __init__(self,): super().__init__() def forward(self, x, y): # x is the cropped, y is the foreign reference return x