from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader from langchain.text_splitter import RecursiveCharacterTextSplitter import os from src.helper import load_pdf, text_split, download_hugging_face_embeddings DATA_PATH = r'G:\Chatbot\data' DB_FAISS_PATH = r'G:\Chatbot\data\vector' '''extracted_data = load_pdf(r"G:\Chatbot\data") text_chunks = text_split(extracted_data) embeddings = download_hugging_face_embeddings() # Initializing the Faiss db = FAISS.from_documents(text_chunks, embeddings) db.save_local(DB_FAISS_PATH) # I change the above DB_FAISS_PATH # db.save_local(r"G:\Chatbot\DB_FAISS_PATH")''' # Load the data from the PDF file def create_vector_db(): extracted_data = load_pdf(DATA_PATH) text_chunks = text_split(extracted_data) embeddings = download_hugging_face_embeddings() db = FAISS.from_documents(text_chunks, embeddings) db.save_local(DB_FAISS_PATH) print("### db is created") '''# Create vector database def create_vector_db(): loader = DirectoryLoader(DATA_PATH, glob='*.pdf', loader_cls=PyPDFLoader) documents = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) texts = text_splitter.split_documents(documents) embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2', model_kwargs={'device': 'cuda'}) db = FAISS.from_documents(texts, embeddings) db.save_local(DB_FAISS_PATH) create_vector_db() # Call the function directly in the cell'''