from flask import Flask, render_template, jsonify, request from src.helper import download_hugging_face_embeddings from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS from langchain.prompts import PromptTemplate from langchain_groq import ChatGroq # from langchain.llms import CTransformers from langchain.chains import RetrievalQA from langchain_core.prompts import ChatPromptTemplate from dotenv import load_dotenv from src.prompt import * import os from store_index import create_vector_db app = Flask(__name__) # load_dotenv() # PINECONE_API_KEY = os.environ.get('PINECONE_API_KEY') # PINECONE_API_ENV = os.environ.get('PINECONE_API_ENV') # DATA_PATH = '/kaggle/input/book-pdf' # DB_FAISS_PATH = r'G:\Chatbot\data\vector' # Create vector database #create_vector_db() print("###333") # Call the function directly in the cell '''#Initializing the Pinecone pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_API_ENV) index_name="medical-bot"''' #embeddings = download_hugging_face_embeddings() # Load the FAISS vector database embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2') # also i change here # db = FAISS.load_local(DB_FAISS_PATH, embeddings) DB_FAISS_PATH = "data/vector" print("vector_base is loading from the folder") db = FAISS.load_local(DB_FAISS_PATH, embeddings, allow_dangerous_deserialization=True) # Loading the index # db = FAISS.load_local(r"G:\Chatbot\DB_FAISS_PATH",embeddings, allow_dangerous_deserialization=True) # docsearch=Pinecone.from_existing_index(index_name, embeddings) # Create a ChatPromptTemplate prompt = ChatPromptTemplate.from_template(prompt_template) chain_type_kwargs = {"prompt": prompt} '''PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) chain_type_kwargs = {"prompt": PROMPT}''' '''llm = CTransformers(model=r"G:\Chatbot\model\llama-2-7b-chat.ggmlv3.q4_0.bin", model_type="llama", config={'max_new_tokens': 512, 'temperature': 0.8})''' # Initialize the LLM # llm = ChatGroq(groq_api_key=groq_api_key, model_name="Llama3-8b-8192") # groq_api_key = ('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') # Load the GROQ and OpenAI API keys groq_api_key = os.getenv('GROQ_API_KEY') # os.environ["GOOGLE_API_KEY"] = os.getenv("GOOGLE_API_KEY") # Initialize the LLM llm = ChatGroq(groq_api_key=groq_api_key, model_name="Llama3-8b-8192") qa = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=db.as_retriever(search_kwargs={'k': 2}), return_source_documents=True, chain_type_kwargs=chain_type_kwargs) @app.route("/") def index(): return render_template('chat.html') @app.route("/get", methods=["GET", "POST"]) def chat(): msg = request.form["msg"] input = msg print(input) result = qa({"query": input}) print("Response : ", result["result"]) return str(result["result"]) if __name__ == '__main__': app.run(host="0.0.0.0", port=7860, debug=True)