import json import gradio as gr import yolov5 from PIL import Image from huggingface_hub import hf_hub_download app_title = "Football Object Detection" models_ids = ['keremberke/yolov5n-football', 'keremberke/yolov5s-football', 'keremberke/yolov5m-football'] article = f"
huggingface.co/{models_ids[-1]} | huggingface.co/keremberke/football-object-detection | awesome-yolov5-models
" # Set default model_id here default_model_id = models_ids[-1] current_model_id = default_model_id model = yolov5.load(current_model_id) examples = [['test_images/18_pp_jpg.rf.912a54e24d38371daf61114b9a6b18be.jpg', 0.25, 'keremberke/yolov5m-football'], ['test_images/54881_jpg.rf.62b337bc47dbf6fbf5a34e18a361de97.jpg', 0.25, 'keremberke/yolov5m-football'], ['test_images/55219_jpg.rf.cdfe02a50951cf1ad449e940fbb646ac.jpg', 0.25, 'keremberke/yolov5m-football']] def predict(image, threshold=0.25, model_id=default_model_id): # update model if required global current_model_id global model if model_id != current_model_id: model = yolov5.load(model_id) current_model_id = model_id # get model input size config_path = hf_hub_download(repo_id=model_id, filename="config.json") with open(config_path, "r") as f: config = json.load(f) input_size = config["input_size"] # perform inference model.conf = threshold results = model(image, size=input_size) numpy_image = results.render()[0] output_image = Image.fromarray(numpy_image) return output_image gr.Interface( title=app_title, description="Created by 'keremberke'", article=article, fn=predict, inputs=[ gr.Image(type="pil"), gr.Slider(maximum=1, step=0.01, value=0.25) ], outputs=gr.Image(type="pil"), examples=examples, cache_examples=True if examples else False, ).launch(enable_queue=True)