import torch import transformers from transformers import BertTokenizer, BertForMaskedLM import gradio as gr device = torch.device('cpu') NUM_CLASSES=6 model=BertForMaskedLM.from_pretrained("./") tokenizer=BertTokenizer.from_pretrained("./") def predict(text=None) -> dict: model.eval() inputs = tokenizer(text, return_tensors="pt") input_ids = inputs["input_ids"].to(device) attention_mask = inputs["attention_mask"].to(device) model.to(device) token_logits = model(input_ids, attention_mask=attention_mask).logits mask_token_index = torch.where(inputs_ex["input_ids"] == tokenizer.mask_token_id)[1] mask_token_logits = token_logits[0, mask_token_index, :] top_5_tokens = torch.topk(mask_token_logits, NUM_CLASSES, dim=1).indices[0].tolist() score = torch.nn.functional.softmax(mask_token_logits)[0] top_5_score = torch.topk(score, NUM_CLASSES).values.tolist() return {tokenizer.decode([tok]): score for tok, score in zip(top_5_tokens, top_5_score)} gr.Interface(fn=predict, inputs=gr.inputs.Textbox(lines=2, placeholder="Your Text… "), title="Mask Language Modeling - Demo", outputs=gr.outputs.Label(num_top_classes=NUM_CLASSES)).launch()