# Core Pkgs
import streamlit as st
from function import *
# EDA Pkgs
import pandas as pd
import matplotlib.pyplot as plt
from wordcloud import WordCloud
# Utils
from datetime import datetime
warnings.filterwarnings("ignore")
# page info setup
menu_items = {
'Get help':'https://www.linkedin.com/in/oluwaseyi-gbadamosi-41015216b/' ,
'Report a bug': 'https://www.linkedin.com/in/oluwaseyi-gbadamosi-41015216b/',
'About': '''
## My Custom App
Some markdown to show in the About dialog.
'''
}
#page configuration
st.set_page_config(page_title="Article Summerizer", page_icon="./favicon/favicon.ico",menu_items=menu_items)
st.set_option('deprecation.showPyplotGlobalUse', False)
def main():
# This is used to hide the made with streamlit watermark
hide_streamlit_style = """
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
# Article Summerizer heading
st.markdown("
Article Summerizer
", unsafe_allow_html=True)
# control for Model Settings
st.sidebar.markdown(" Model Settings", unsafe_allow_html=True)
max_length= st.sidebar.slider("Maximum length of the generated text is 500 tokens",min_value=100,max_value=500)
min_length= st.sidebar.slider("Minimum length of the generated text",min_value=30)
model_type = st.sidebar.selectbox("Model type", options=["Bart","T5"])
# This function is used to upload a .txt, .pdf, .docx file for summarization
upload_doc = st.file_uploader("Upload a .txt, .pdf, .docx file for summarization")
st.markdown("OR
",unsafe_allow_html=True)
#This function is used to Type your Message... (text area)
plain_text = st.text_area("Type your Message...",height=200)
# this is used to control the logic of the code
if upload_doc:
clean_text = preprocess_plain_text(extract_text_from_file(upload_doc))
else:
clean_text = preprocess_plain_text(plain_text)
summarize = st.button("Summarize...")
# called on toggle button [summarize]
if summarize:
if model_type == "Bart":
text_to_summarize = clean_text
with st.spinner(
text="Loading Bart Model and Extracting summary. This might take a few seconds depending on the length of your text..."):
summarizer_model = bart()
summarized_text = summarizer_model(text_to_summarize, max_length=max_length ,min_length=min_length)
summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
elif model_type == "T5":
text_to_summarize = clean_text
with st.spinner(
text="Loading T5 Model and Extracting summary. This might take a few seconds depending on the length of your text..."):
summarizer_model = t5()
summarized_text = summarizer_model(text_to_summarize, max_length=max_length, min_length=min_length)
summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
res_col1 ,res_col2 = st.columns(2)
with res_col1:
st.subheader("Generated Text Visualization")
# Create and generate a word cloud image:
wordcloud = WordCloud().generate(summarized_text)
# Display the generated image:
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
plt.show()
st.pyplot()
summary_downloader(summarized_text)
with res_col2:
st.subheader("Summarized Text Output")
st.success("Summarized Text")
st.write(summarized_text)
if __name__ == '__main__':
main()