import gradio as gr import tempfile from transformers import MT5ForConditionalGeneration, MT5Tokenizer,VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer import torch from PIL import Image device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_size = "small" model_name = f"persiannlp/mt5-{model_size}-parsinlu-translation_en_fa" translation_tokenizer = MT5Tokenizer.from_pretrained(model_name) translation_model = MT5ForConditionalGeneration.from_pretrained(model_name) translation_model=translation_model.to(device) def run_transaltion_model(input_string, **generator_args): input_ids = translation_tokenizer.encode(input_string, return_tensors="pt") res = translation_model.generate(input_ids, **generator_args) output = translation_tokenizer.batch_decode(res, skip_special_tokens=True) return output model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") model=model.to(device) max_length = 32 num_beams = 4 gen_kwargs = {"max_length": max_length, "num_beams": num_beams} def predict_step(image_paths): images = [] for image_path in image_paths: i_image = Image.open(image_path) if i_image.mode != "RGB": i_image = i_image.convert(mode="RGB") images.append(i_image) pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values pixel_values = pixel_values.to(device) output_ids = model.generate(pixel_values, **gen_kwargs) preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] return run_transaltion_model(preds[0])[0] def ImageCaptioning(image): with tempfile.NamedTemporaryFile(suffix=".png") as temp_image_file: # Copy the contents of the uploaded image file to the temporary file Image.fromarray(image).save(temp_image_file.name) # Load the image file using Pillow caption=predict_step([temp_image_file.name]) return caption iface = gr.Interface(fn=ImageCaptioning, inputs="image", outputs="text") iface.launch(share=False)