# Copyright (c) Alibaba Cloud. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """A simple web interactive chat demo based on gradio.""" import os from argparse import ArgumentParser import gradio as gr import mdtex2html import torch from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation import GenerationConfig DEFAULT_CKPT_PATH = 'Qwen/Qwen-7B-Chat' def _get_args(): parser = ArgumentParser() parser.add_argument("-c", "--checkpoint-path", type=str, default=DEFAULT_CKPT_PATH, help="Checkpoint name or path, default to %(default)r") parser.add_argument("--cpu-only", action="store_true", help="Run demo with CPU only") parser.add_argument("--share", action="store_true", default=True, help="Create a publicly shareable link for the interface.") parser.add_argument("--inbrowser", action="store_true", default=False, help="Automatically launch the interface in a new tab on the default browser.") parser.add_argument("--server-port", type=int, default=8000, help="Demo server port.") parser.add_argument("--server-name", type=str, default="127.0.0.1", help="Demo server name.") args = parser.parse_args() return args def _load_model_tokenizer(args): tokenizer = AutoTokenizer.from_pretrained( args.checkpoint_path, trust_remote_code=True, resume_download=True, ) if args.cpu_only: device_map = "cpu" else: device_map = "balanced" qconfig_path = os.path.join(args.checkpoint_path, 'quantize_config.json') if os.path.exists(qconfig_path): from auto_gptq import AutoGPTQForCausalLM model = AutoGPTQForCausalLM.from_quantized( args.checkpoint_path, device_map=device_map, trust_remote_code=True, resume_download=True, use_safetensors=True, ).eval() else: model = AutoModelForCausalLM.from_pretrained( args.checkpoint_path, device_map=device_map, trust_remote_code=True, resume_download=True, ).eval() config = GenerationConfig.from_pretrained( args.checkpoint_path, trust_remote_code=True, resume_download=True, ) return model, tokenizer, config def postprocess(self, y): if y is None: return [] for i, (message, response) in enumerate(y): y[i] = ( None if message is None else mdtex2html.convert(message), None if response is None else mdtex2html.convert(response), ) return y gr.Chatbot.postprocess = postprocess def _parse_text(text): lines = text.split("\n") lines = [line for line in lines if line != ""] count = 0 for i, line in enumerate(lines): if "```" in line: count += 1 items = line.split("`") if count % 2 == 1: lines[i] = f'
'
else:
lines[i] = f"
"
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", r"\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = """") gr.Markdown("""