import subprocess import os if os.getenv('SYSTEM') == 'spaces': subprocess.call('pip install tensorflow==2.9'.split()) subprocess.call('pip install keras==2.9'.split()) subprocess.call('pip install git+https://github.com/facebookresearch/segment-anything.git') subprocess.call('pip install opencv-python-headless==4.5.5.64'.split()) subprocess.call('pip install git+https://github.com/cocodataset/panopticapi.git'.split()) import gradio as gr from huggingface_hub import snapshot_download import cv2 import dotenv dotenv.load_dotenv() import numpy as np import gradio as gr import glob from inference_sam import segmentation_sam import pathlib if not os.path.exists('images'): REPO_ID='Serrelab/image_examples_gradio' snapshot_download(repo_id=REPO_ID, token=os.environ.get('READ_TOKEN'),repo_type='dataset',local_dir='images') def segment_image(input_image): img = segmentation_sam(input_image) return img def classify_image(input_image, model_name): if 'Rock 170' ==model_name: from inference_resnet import inference_resnet_finer result = inference_resnet_finer(input_image,model_name,n_classes=171) return result elif 'Mummified 170' ==model_name: from inference_resnet import inference_resnet_finer result = inference_resnet_finer(input_image,model_name,n_classes=170) return result if 'Fossils 19' ==model_name: from inference_beit import inference_dino return inference_dino(input_image,model_name) return None def find_closest(input_image): return None with gr.Blocks(theme='sudeepshouche/minimalist') as demo: with gr.Tab(" 19 Classes Support"): with gr.Row(): with gr.Column(): input_image = gr.Image(label="Input") classify_image_button = gr.Button("Classify Image") with gr.Column(): segmented_image = gr.outputs.Image(label="SAM output",type='numpy') segment_button = gr.Button("Segment Image") #classify_segmented_button = gr.Button("Classify Segmented Image") with gr.Column(): drop_2 = gr.Dropdown( ["Mummified 170", "Rock 170", "Fossils 19"], multiselect=False, value=["Rock 170"], label="Model", interactive=True, ) class_predicted = gr.Label(label='Class Predicted',num_top_classes=10) with gr.Row(): paths = sorted(pathlib.Path('images/').rglob('*.jpg')) samples=[[path.as_posix()] for path in paths if 'fossils' in str(path) ][:19] examples_fossils = gr.Examples(samples, inputs=input_image,examples_per_page=10,label='Fossils Examples from the dataset') samples=[[path.as_posix()] for path in paths if 'leaves' in str(path) ][:19] examples_leaves = gr.Examples(samples, inputs=input_image,examples_per_page=5,label='Leaves Examples from the dataset') with gr.Accordion("Using Diffuser"): with gr.Column(): prompt = gr.Textbox(lines=1, label="Prompt") output_image = gr.Image(label="Output") generate_button = gr.Button("Generate Leave") with gr.Column(): class_predicted2 = gr.Label(label='Class Predicted from diffuser') classify_button = gr.Button("Classify Image") with gr.Accordion("Explanations "): gr.Markdown("Computing Explanations from the model") with gr.Row(): original_input = gr.Image(label="Original Frame") saliency = gr.Image(label="saliency") gradcam = gr.Image(label='gradcam') guided_gradcam = gr.Image(label='guided gradcam') guided_backprop = gr.Image(label='guided backprop') generate_explanations = gr.Button("Generate Explanations") with gr.Accordion('Closest Images'): gr.Markdown("Finding the closest images in the dataset") with gr.Row(): closest_image_0 = gr.Image(label='Closest Image') closest_image_1 = gr.Image(label='Second Closest Image') closest_image_2 = gr.Image(label='Third Closest Image') closest_image_3 = gr.Image(label='Forth Closest Image') closest_image_4 = gr.Image(label='Fifth Closest Image') find_closest_btn = gr.Button("Find Closest Images") segment_button.click(segment_image, inputs=input_image, outputs=segmented_image) classify_image_button.click(classify_image, inputs=[input_image,drop_2], outputs=class_predicted) #classify_segmented_button.click(classify_image, inputs=[segmented_image,drop_2], outputs=class_predicted) demo.launch(debug=True)