File size: 26,771 Bytes
b5bd1aa
26a5842
 
c5987cc
58b97f2
b91d93b
a750190
9aeacca
d4637e4
 
a8b2fd4
 
32696d3
980018a
 
 
 
de9239a
5d5cb52
77acd73
a8b2fd4
 
f0ba455
81e0f3f
35e6a69
f0ba455
383a137
a8b2fd4
f0ba455
 
 
 
 
 
 
 
 
 
9deb7e1
 
f0ba455
 
 
 
9deb7e1
 
 
f0ba455
 
 
 
 
 
9deb7e1
 
f0ba455
9deb7e1
 
 
 
f0ba455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9deb7e1
f0ba455
 
 
 
 
9deb7e1
f0ba455
 
 
9deb7e1
 
 
f0ba455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9deb7e1
 
 
f0ba455
9deb7e1
 
f0ba455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9deb7e1
 
 
f0ba455
 
 
 
 
 
 
 
 
 
 
9deb7e1
0611560
f0ba455
 
 
 
 
 
9deb7e1
f0ba455
 
 
 
 
 
 
 
 
 
 
9deb7e1
 
 
 
 
 
 
 
 
f0ba455
9deb7e1
f0ba455
 
9deb7e1
 
 
f0ba455
 
9deb7e1
 
f0ba455
 
 
 
 
9deb7e1
 
f0ba455
 
 
9deb7e1
 
f0ba455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9deb7e1
f0ba455
 
9deb7e1
 
f0ba455
 
9deb7e1
 
f0ba455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9deb7e1
 
383a137
35e6a69
383a137
 
0b69bda
 
 
35e6a69
3eb256b
383a137
32696d3
f0ba455
35e6a69
9aeacca
 
de9239a
 
35e6a69
de9239a
 
 
 
 
 
9aeacca
de9239a
 
9aeacca
35e6a69
 
9782585
 
35e6a69
 
 
 
 
d9be852
9782585
35e6a69
 
 
 
 
d9be852
9782585
35e6a69
 
 
 
 
 
 
 
 
 
d9be852
9782585
35e6a69
 
 
 
 
a8b2fd4
9782585
35e6a69
 
 
 
 
 
d9be852
53e1625
 
 
35e6a69
a69e1fa
b1ed649
53e1625
 
 
 
 
 
 
 
 
 
 
 
 
a69e1fa
b1ed649
 
 
53e1625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16e8b2c
 
 
 
 
 
50da573
16e8b2c
 
 
50da573
16e8b2c
50da573
 
 
16e8b2c
 
 
 
53e1625
16e8b2c
 
 
 
 
53e1625
16e8b2c
35e6a69
53e1625
0611560
53e1625
 
b1ed649
 
 
3c2118a
53e1625
b1ed649
3c2118a
53e1625
b1ed649
3c2118a
53e1625
b1ed649
 
 
53e1625
1b009d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53e1625
 
 
 
 
 
 
 
 
 
 
 
95b1167
b1ed649
5a6b076
 
 
 
 
 
 
 
 
 
 
 
 
95b1167
50da573
 
5a6b076
7e589f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35e6a69
4a53fd8
9b5077c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a53fd8
35e6a69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db61d73
1e5b48a
db61d73
 
 
 
 
 
1e5b48a
 
 
35e6a69
 
1e5b48a
35e6a69
 
db61d73
 
 
 
 
 
 
 
 
35e6a69
db61d73
35e6a69
1e5b48a
 
35e6a69
8cc0898
db61d73
 
 
 
 
 
 
 
8cc0898
 
 
 
 
35e6a69
 
 
1e5b48a
35e6a69
1e5b48a
db61d73
 
 
35e6a69
 
db61d73
 
 
 
 
 
 
 
 
 
 
 
1e5b48a
35e6a69
 
1e5b48a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
import streamlit as st
from pathlib import Path
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw, ImageFont
import time
from transformers import AutoModelForCausalLM, AutoTokenizer
import seaborn as sns
from io import BytesIO
import base64
from streamlit_drawable_canvas import st_canvas
import io
import torch
import cv2
import mediapipe as mp
import base64
import gc
import  accelerate
import numpy


# Set page config
st.set_page_config(page_title="NeuraSense AI", page_icon="🧠", layout="wide")

# Enhanced Custom CSS for a hyper-cyberpunk realistic look
custom_css = """
<style>
    @import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;500;700&family=Roboto+Mono:wght@400;700&display=swap');

    :root {
        --neon-blue: #00FFFF;
        --neon-pink: #FF00FF;
        --neon-green: #39FF14;
        --dark-bg: #0a0a0a;
        --darker-bg: #050505;
        --light-text: #E0E0E0;
    }

    body {
        color: var(--light-text);
        background-color: var(--dark-bg);
        font-family: 'Roboto Mono', monospace;
        overflow-x: hidden;
    }

    .stApp {
        background: 
            linear-gradient(45deg, var(--darker-bg) 0%, var(--dark-bg) 100%),
            repeating-linear-gradient(45deg, #000 0%, #000 2%, transparent 2%, transparent 4%),
            repeating-linear-gradient(-45deg, #111 0%, #111 1%, transparent 1%, transparent 3%);
        background-blend-mode: overlay;
        animation: backgroundPulse 20s infinite alternate;
    }

    @keyframes backgroundPulse {
        0% { background-position: 0% 50%; }
        100% { background-position: 100% 50%; }
    }

    h1, h2, h3 {
        font-family: 'Orbitron', sans-serif;
        position: relative;
        text-shadow: 
            0 0 5px var(--neon-blue),
            0 0 10px var(--neon-blue),
            0 0 20px var(--neon-blue),
            0 0 40px var(--neon-blue);
        animation: textGlitch 5s infinite alternate;
    }

    @keyframes textGlitch {
        0% { transform: skew(0deg); }
        20% { transform: skew(5deg); text-shadow: 3px 3px 0 var(--neon-pink); }
        40% { transform: skew(-5deg); text-shadow: -3px -3px 0 var(--neon-green); }
        60% { transform: skew(3deg); text-shadow: 2px -2px 0 var(--neon-blue); }
        80% { transform: skew(-3deg); text-shadow: -2px 2px 0 var(--neon-pink); }
        100% { transform: skew(0deg); }
    }

    .stButton>button {
        color: var(--neon-blue);
        border: 2px solid var(--neon-blue);
        border-radius: 5px;
        background: linear-gradient(45deg, rgba(0,255,255,0.1), rgba(0,255,255,0.3));
        box-shadow: 0 0 15px var(--neon-blue);
        transition: all 0.3s ease;
        text-transform: uppercase;
        letter-spacing: 2px;
        backdrop-filter: blur(5px);
    }

    .stButton>button:hover {
        transform: scale(1.05) translateY(-3px);
        box-shadow: 0 0 30px var(--neon-blue);
        text-shadow: 0 0 5px var(--neon-blue);
    }

    .stTextInput>div>div>input, .stTextArea>div>div>textarea, .stSelectbox>div>div>div {
        background-color: rgba(0, 255, 255, 0.1);
        border: 1px solid var(--neon-blue);
        border-radius: 5px;
        color: var(--neon-blue);
        backdrop-filter: blur(5px);
    }

    .stTextInput>div>div>input:focus, .stTextArea>div>div>textarea:focus, .stSelectbox>div>div>div:focus {
        box-shadow: 0 0 20px var(--neon-blue);
    }

    .stSlider>div>div>div>div {
        background-color: var(--neon-blue);
    }

    .stSlider>div>div>div>div>div {
        background-color: var(--neon-pink);
        box-shadow: 0 0 10px var(--neon-pink);
    }

    ::-webkit-scrollbar {
        width: 10px;
        height: 10px;
    }

    ::-webkit-scrollbar-track {
        background: var(--darker-bg);
        border-radius: 5px;
    }

    ::-webkit-scrollbar-thumb {
        background: var(--neon-blue);
        border-radius: 5px;
        box-shadow: 0 0 5px var(--neon-blue);
    }

    ::-webkit-scrollbar-thumb:hover {
        background: var(--neon-pink);
        box-shadow: 0 0 5px var(--neon-pink);
    }

    .stPlot, .stDataFrame {
        border: 1px solid var(--neon-blue);
        border-radius: 5px;
        overflow: hidden;
        box-shadow: 0 0 15px rgba(0, 255, 255, 0.3);
    }

    .stImage, .stIcon {
        filter: drop-shadow(0 0 5px var(--neon-blue));
    }

    .stSidebar, .stContainer {
        background: 
            linear-gradient(45deg, var(--darker-bg) 0%, var(--dark-bg) 100%),
            repeating-linear-gradient(45deg, #000 0%, #000 2%, transparent 2%, transparent 4%);
        animation: sidebarPulse 10s infinite alternate;
    }

    @keyframes sidebarPulse {
        0% { background-position: 0% 50%; }
        100% { background-position: 100% 50%; }
    }

    .element-container {
        position: relative;
    }

    .element-container::before {
        content: '';
        position: absolute;
        top: -5px;
        left: -5px;
        right: -5px;
        bottom: -5px;
        border: 1px solid var(--neon-blue);
        border-radius: 10px;
        opacity: 0.5;
        pointer-events: none;
    }

    .stMarkdown a {
        color: var(--neon-pink);
        text-decoration: none;
        position: relative;
        transition: all 0.3s ease;
    }

    .stMarkdown a::after {
        content: '';
        position: absolute;
        width: 100%;
        height: 1px;
        bottom: -2px;
        left: 0;
        background-color: var(--neon-pink);
        transform: scaleX(0);
        transform-origin: bottom right;
        transition: transform 0.3s ease;
    }

    .stMarkdown a:hover::after {
        transform: scaleX(1);
        transform-origin: bottom left;
    }

    /* Cyberpunk-style progress bar */
    .stProgress > div > div {
        background-color: var(--neon-blue);
        background-image: linear-gradient(
            45deg, 
            var(--neon-pink) 25%, 
            transparent 25%, 
            transparent 50%, 
            var(--neon-pink) 50%, 
            var(--neon-pink) 75%, 
            transparent 75%, 
            transparent
        );
        background-size: 40px 40px;
        animation: progress-bar-stripes 1s linear infinite;
    }

    @keyframes progress-bar-stripes {
        0% { background-position: 40px 0; }
        100% { background-position: 0 0; }
    }

    /* Glowing checkbox */
    .stCheckbox > label > div {
        border-color: var(--neon-blue);
        transition: all 0.3s ease;
    }

    .stCheckbox > label > div[data-checked="true"] {
        background-color: var(--neon-blue);
        box-shadow: 0 0 10px var(--neon-blue);
    }

    /* Futuristic radio button */
    .stRadio > div {
        background-color: rgba(0, 255, 255, 0.1);
        border-radius: 10px;
        padding: 10px;
    }

    .stRadio > div > label > div {
        border-color: var(--neon-blue);
        transition: all 0.3s ease;
    }

    .stRadio > div > label > div[data-checked="true"] {
        background-color: var(--neon-blue);
        box-shadow: 0 0 10px var(--neon-blue);
    }

    /* Cyberpunk-style tables */
    .stDataFrame table {
        border-collapse: separate;
        border-spacing: 0;
        border: 1px solid var(--neon-blue);
        border-radius: 10px;
        overflow: hidden;
    }

    .stDataFrame th {
        background-color: rgba(0, 255, 255, 0.2);
        color: var(--neon-blue);
        text-transform: uppercase;
        letter-spacing: 1px;
    }

    .stDataFrame td {
        border-bottom: 1px solid rgba(0, 255, 255, 0.2);
    }

    .stDataFrame tr:last-child td {
        border-bottom: none;
    }

    /* Futuristic file uploader */
    .stFileUploader > div {
        border: 2px dashed var(--neon-blue);
        border-radius: 10px;
        background-color: rgba(0, 255, 255, 0.05);
        transition: all 0.3s ease;
    }

    .stFileUploader > div:hover {
        background-color: rgba(0, 255, 255, 0.1);
        box-shadow: 0 0 15px rgba(0, 255, 255, 0.3);
    }

    /* Cyberpunk-style tooltips */
    .stTooltipIcon {
        color: var(--neon-pink);
        transition: all 0.3s ease;
    }

    .stTooltipIcon:hover {
        color: var(--neon-blue);
        text-shadow: 0 0 5px var(--neon-blue);
    }

    /* Futuristic date input */
    .stDateInput > div > div > input {
        background-color: rgba(0, 255, 255, 0.1);
        border: 1px solid var(--neon-blue);
        border-radius: 5px;
        color: var(--neon-blue);
        backdrop-filter: blur(5px);
    }

    .stDateInput > div > div > input:focus {
        box-shadow: 0 0 20px var(--neon-blue);
    }

    /* Cyberpunk-style code blocks */
    .stCodeBlock {
        background-color: rgba(0, 0, 0, 0.6);
        border: 1px solid var(--neon-green);
        border-radius: 5px;
        color: var(--neon-green);
        font-family: 'Roboto Mono', monospace;
        padding: 10px;
        position: relative;
        overflow: hidden;
    }

    .stCodeBlock::before {
        content: '';
        position: absolute;
        top: -10px;
        left: -10px;
        right: -10px;
        bottom: -10px;
        background: linear-gradient(45deg, var(--neon-green), transparent);
        opacity: 0.1;
        z-index: -1;
    }
</style>
"""

# Apply the custom CSS
st.markdown(custom_css, unsafe_allow_html=True)
AVATAR_WIDTH = 600
AVATAR_HEIGHT = 800



# Your Streamlit app code goes here
st.title("NeuraSense AI")


# Set up DialoGPT model
@st.cache_resource
def load_tokenizer():
    return AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")

@st.cache_resource
def load_model():
    model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium", 
                                                 device_map="auto", 
                                                 torch_dtype=torch.float16)
    return model

tokenizer = load_tokenizer()
model = load_model()



# Advanced Sensor Classes
class QuantumSensor:
   @staticmethod
   def measure(x, y, sensitivity):
       return np.sin(x/20) * np.cos(y/20) * sensitivity * np.random.normal(1, 0.1)



class NanoThermalSensor:
   @staticmethod
   def measure(base_temp, pressure, duration):
       return base_temp + 10 * pressure * (1 - np.exp(-duration / 3)) + np.random.normal(0, 0.001)



class AdaptiveTextureSensor:
   textures = [
       "nano-smooth", "quantum-rough", "neuro-bumpy", "plasma-silky",
       "graviton-grainy", "zero-point-soft", "dark-matter-hard", "bose-einstein-condensate"
   ]
  
   @staticmethod
   def measure(x, y):
       return AdaptiveTextureSensor.textures[hash((x, y)) % len(AdaptiveTextureSensor.textures)]



class EMFieldSensor:
   @staticmethod
   def measure(x, y, sensitivity):
       return (np.sin(x / 30) * np.cos(y / 30) + np.random.normal(0, 0.1)) * 10 * sensitivity



class NeuralNetworkSimulator:
   @staticmethod
   def process(inputs):
       weights = np.random.rand(len(inputs))
       return np.dot(inputs, weights) / np.sum(weights)



# Set up MediaPipe Pose
mp_pose = mp.solutions.pose
pose = mp_pose.Pose(static_image_mode=True, min_detection_confidence=0.5)

def detect_humanoid(image_path):
    image = cv2.imread(image_path)
    image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    results = pose.process(image_rgb)
    if results.pose_landmarks:
        landmarks = results.pose_landmarks.landmark
        image_height, image_width, _ = image.shape
        keypoints = []
        for landmark in landmarks:
            x = int(landmark.x * image_width)
            y = int(landmark.y * image_height)
            keypoints.append((x, y))
        return keypoints
    return []

def apply_touch_points(image_path, keypoints):
    image = cv2.imread(image_path)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    image = Image.fromarray(image)
    draw = ImageDraw.Draw(image)
    for point in keypoints:
        draw.ellipse([point[0]-5, point[1]-5, point[0]+5, point[1]+5], fill='red')
    return image

def create_sensation_map(width, height, keypoints):
    sensation_map = np.zeros((height, width, 12))
    for y in range(height):
        for x in range(width):
            base_sensitivities = np.random.rand(12) * 0.5 + 0.5
            
            # Enhance sensitivities near keypoints
            for kp in keypoints:
                distance = np.sqrt((x - kp[0])**2 + (y - kp[1])**2)
                if distance < 30:  # Adjust this value to change the area of influence
                    base_sensitivities *= 1.5
            
            sensation_map[y, x, 0] = base_sensitivities[0] * np.random.rand()  # Pain
            sensation_map[y, x, 1] = base_sensitivities[1] * np.random.rand()  # Pleasure
            sensation_map[y, x, 2] = base_sensitivities[2] * np.random.rand()  # Pressure
            sensation_map[y, x, 3] = base_sensitivities[3] * (np.random.rand() * 10 + 30)  # Temperature
            sensation_map[y, x, 4] = base_sensitivities[4] * np.random.rand()  # Texture
            sensation_map[y, x, 5] = base_sensitivities[5] * np.random.rand()  # EM field
            sensation_map[y, x, 6] = base_sensitivities[6] * np.random.rand()  # Tickle
            sensation_map[y, x, 7] = base_sensitivities[7] * np.random.rand()  # Itch
            sensation_map[y, x, 8] = base_sensitivities[8] * np.random.rand()  # Quantum
            sensation_map[y, x, 9] = base_sensitivities[9] * np.random.rand()  # Neural
            sensation_map[y, x, 10] = base_sensitivities[10] * np.random.rand()  # Proprioception
            sensation_map[y, x, 11] = base_sensitivities[11] * np.random.rand()  # Synesthesia

    return sensation_map

def create_heatmap(sensation_map, sensation_type):
    plt.figure(figsize=(10, 15))
    sns.heatmap(sensation_map[:, :, sensation_type], cmap='viridis')
    plt.title(f'{["Pain", "Pleasure", "Pressure", "Temperature", "Texture", "EM Field", "Tickle", "Itch", "Quantum", "Neural", "Proprioception", "Synesthesia"][sensation_type]} Sensation Map')
    plt.axis('off')
    
    # Instead of displaying, save to a buffer
    buf = io.BytesIO()
    plt.savefig(buf, format='png')
    buf.seek(0)
    plt.close()  # Close the figure to free up memory
    
    # Create an image from the buffer
    heatmap_img = Image.open(buf)
    return heatmap_img

def generate_ai_response(keypoints, sensation_map):
    num_keypoints = len(keypoints)
    avg_sensations = np.mean(sensation_map, axis=(0, 1))
    
    response = f"I detect {num_keypoints} key points on the humanoid figure. "
    response += "The average sensations across the body are:\n"
    for i, sensation in enumerate(["Pain", "Pleasure", "Pressure", "Temperature", "Texture", "EM Field", 
                                   "Tickle", "Itch", "Quantum", "Neural", "Proprioception", "Synesthesia"]):
        response += f"{sensation}: {avg_sensations[i]:.2f}\n"
    
    return response

uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])

if uploaded_file is not None:
    # Read the image
    image_path = 'temp.jpg'
    with open(image_path, 'wb') as f:
        f.write(uploaded_file.getvalue())
    
    # Detect humanoid keypoints
    keypoints = detect_humanoid(image_path)
    
    # Apply touch points to the image
    processed_image = apply_touch_points(image_path, keypoints)
    
    # Create sensation map
    image = cv2.imread(image_path)
    image_height, image_width, _ = image.shape
    sensation_map = create_sensation_map(image_width, image_height, keypoints)
    
    # Display the processed image
    fig, ax = plt.subplots()
    ax.imshow(processed_image)
    
    # Create a list to store the clicked points
    clicked_points = []
    
    def onclick(event):
        if event.xdata is not None and event.ydata is not None:
            clicked_points.append((int(event.xdata), int(event.ydata)))
            st.write(f"Clicked point: ({int(event.xdata)}, {int(event.ydata)})")
            
            # Update sensation values based on the clicked point
            sensation = sensation_map[int(event.ydata), int(event.xdata)]
            (
                pain, pleasure, pressure_sens, temp_sens, texture_sens,
                em_sens, tickle_sens, itch_sens, quantum_sens, neural_sens,
                proprioception_sens, synesthesia_sens
            ) = sensation
            
            st.write("### Sensory Data Analysis")
            st.write(f"Interaction Point: ({int(event.xdata):.1f}, {int(event.ydata):.1f})")
            st.write(f"Pain: {pain:.2f} | Pleasure: {pleasure:.2f} | Pressure: {pressure_sens:.2f}")
            st.write(f"Temperature: {temp_sens:.2f} | Texture: {texture_sens:.2f} | EM Field: {em_sens:.2f}")
            st.write(f"Tickle: {tickle_sens:.2f} | Itch: {itch_sens:.2f} | Quantum: {quantum_sens:.2f}")
            st.write(f"Neural: {neural_sens:.2f} | Proprioception: {proprioception_sens:.2f} | Synesthesia: {synesthesia_sens:.2f}")
    
    fig.canvas.mpl_connect('button_press_event', onclick)
    
    # Display the plot
    st.pyplot(fig)

    # Display heatmaps for different sensations
    sensation_types = ["Pain", "Pleasure", "Pressure", "Temperature", "Texture", "EM Field", 
                       "Tickle", "Itch", "Quantum", "Neural", "Proprioception", "Synesthesia"]
    
    selected_sensation = st.selectbox("Select a sensation to view:", sensation_types)
    heatmap = create_heatmap(sensation_map, sensation_types.index(selected_sensation))
    st.image(heatmap, use_column_width=True)

    # Generate AI response based on the image and sensations
    if st.button("Generate AI Response"):
        response = generate_ai_response(keypoints, sensation_map)
        st.write("AI Response:", response)
        
    # Touch controls and output
    st.subheader("Neural Interface Controls")
    
    # Touch duration
    touch_duration = st.slider("Interaction Duration (s)", 0.1, 5.0, 1.0, 0.1)
    
    # Touch pressure
    touch_pressure = st.slider("Interaction Intensity", 0.1, 2.0, 1.0, 0.1)
    
    # Toggle quantum feature
    use_quantum = st.checkbox("Enable Quantum Sensing", value=True)
    
    # Toggle synesthesia
    use_synesthesia = st.checkbox("Enable Synesthesia", value=False)
    
    # Add this with your other UI elements
    show_heatmap = st.checkbox("Show Sensation Heatmap", value=True)
    
    if st.button("Simulate Interaction"):
        # Simulate interaction at the clicked point
        if 'clicked_points' in locals() and clicked_points:
            touch_x, touch_y = clicked_points[-1]
            
            sensation = sensation_map[touch_y, touch_x]
            (
                pain, pleasure, pressure_sens, temp_sens, texture_sens,
                em_sens, tickle_sens, itch_sens, quantum_sens, neural_sens,
                proprioception_sens, synesthesia_sens
            ) = sensation

            measured_pressure = pressure_sens * touch_pressure
            measured_temp = temp_sens  # Assuming temperature doesn't change
            measured_texture = texture_sens  # Assuming texture doesn't change
            measured_em = em_sens  # Assuming EM field doesn't change
            
            if use_quantum:
                quantum_state = quantum_sens
            else:
                quantum_state = "N/A"

            # Calculate overall sensations
            pain_level = pain * measured_pressure * touch_pressure
            pleasure_level = pleasure * (measured_temp - 37) / 10
            tickle_level = tickle_sens * (1 - np.exp(-touch_duration / 0.5))
            itch_level = itch_sens * (1 - np.exp(-touch_duration / 1.5))
            
            # Proprioception (sense of body position)
            proprioception = proprioception_sens * np.linalg.norm([touch_x - image_width/2, touch_y - image_height/2]) / (image_width/2)
            
            # Synesthesia (mixing of senses)
            if use_synesthesia:
                synesthesia = synesthesia_sens * (measured_pressure + measured_temp + measured_em) / 3
            else:
                synesthesia = "N/A"
            
            st.write("### Simulated Interaction Results")
            st.write(f"Interaction Point: ({touch_x:.1f}, {touch_y:.1f})")
            st.write(f"Duration: {touch_duration:.1f} s | Intensity: {touch_pressure:.2f}")
            st.write(f"Pain: {pain_level:.2f} | Pleasure: {pleasure_level:.2f} | Pressure: {measured_pressure:.2f}")
            st.write(f"Temperature: {measured_temp:.2f} | Texture: {measured_texture:.2f} | EM Field: {measured_em:.2f}")
            st.write(f"Tickle: {tickle_level:.2f} | Itch: {itch_level:.2f} | Quantum: {quantum_state}")
            st.write(f"Neural: {neural_sens:.2f} | Proprioception: {proprioception:.2f} | Synesthesia: {synesthesia}")
            
            # Display a heatmap of the sensations
            if show_heatmap:
                heatmap = create_heatmap(sensation_map, sensation_types.index("Pain"))
                st.image(heatmap, use_column_width=True)

    # Calculate the average pressure value
    average_pressure = np.mean(sensation_map[:, :, 2])

    # Create a futuristic data display
    data_display = (
        "```\n"
        "+---------------------------------------------+\n"
        f"| Pressure     : {average_pressure:.2f}".ljust(45) + "|\n"
        f"| Temperature  : {np.mean(sensation_map[:, :, 3]):.2f}°C".ljust(45) + "|\n"
        f"| Texture      : {np.mean(sensation_map[:, :, 4]):.2f}".ljust(45) + "|\n"
        f"| EM Field     : {np.mean(sensation_map[:, :, 5]):.2f} μT".ljust(45) + "|\n"
        f"| Quantum State: {np.mean(sensation_map[:, :, 8]):.2f}".ljust(45) + "|\n"
        "+---------------------------------------------+\n"
        f"| Pain Level   : {np.mean(sensation_map[:, :, 0]):.2f}".ljust(45) + "|\n"
        f"| Pleasure     : {np.mean(sensation_map[:, :, 1]):.2f}".ljust(45) + "|\n"
        f"| Tickle       : {np.mean(sensation_map[:, :, 6]):.2f}".ljust(45) + "|\n"
        f"| Itch         : {np.mean(sensation_map[:, :, 7]):.2f}".ljust(45) + "|\n"
        f"| Proprioception: {np.mean(sensation_map[:, :, 10]):.2f}".ljust(44) + "|\n"
        f"| Synesthesia  : {np.mean(sensation_map[:, :, 11]):.2f}".ljust(45) + "|\n"
        f"| Neural Response: {np.mean(sensation_map[:, :, 9]):.2f}".ljust(43) + "|\n"
        "+---------------------------------------------+\n"
        "```"
    )

    st.code(data_display, language="")

# Generate description
prompt = (
    "Human: Analyze the sensory input for a hyper-advanced AI humanoid:\n"
    "    Location: (" + str(round(touch_x, 1)) + ", " + str(round(touch_y, 1)) + ")\n"
    "    Duration: " + str(round(touch_duration, 1)) + "s, Intensity: " + str(round(touch_pressure, 2)) + "\n"
    "    Pressure: " + str(round(measured_pressure, 2)) + "\n"
    "    Temperature: " + str(round(measured_temp, 2)) + "°C\n"
    "    Texture: " + measured_texture + "\n"
    "    EM Field: " + str(round(measured_em, 2)) + " μT\n"
    "    Quantum State: " + str(quantum_state) + "\n"
    "    Resulting in:\n"
    "    Pain: " + str(round(pain_level, 2)) + ", Pleasure: " + str(round(pleasure_level, 2)) + "\n"
    "    Tickle: " + str(round(tickle_level, 2)) + ", Itch: " + str(round(itch_level, 2)) + "\n"
    "    Proprioception: " + str(round(proprioception, 2)) + "\n"
    "    Synesthesia: " + synesthesia + "\n"
    "    Neural Response: " + str(round(neural_response, 2)) + "\n"
    "    Provide a detailed, scientific analysis of the AI's experience.\n"
    "    AI:"
)


input_ids = tokenizer.encode(prompt, return_tensors="pt")



output = model.generate(
   input_ids,
   max_length=400,
   num_return_sequences=1,
   no_repeat_ngram_size=2,
   top_k=50,
   top_p=0.95,
   temperature=0.7
)



response = tokenizer.decode(output[0], skip_special_tokens=True).split("AI:")[-1].strip()



st.write("### AI's Sensory Analysis:")
st.write(response)




# Constants
AVATAR_WIDTH = 50  # Reduced size
AVATAR_HEIGHT = 75  # Reduced size

# Function to generate sensation data on-the-fly
def generate_sensation_data(i, j):
    return np.random.rand()

# Simplified sensation map
st.subheader("Neuro-Sensory Map")
titles = [
   'Pain', 'Pleasure', 'Pressure', 'Temperature', 'Texture',
   'Tickle', 'Itch', 'Proprioception', 'Synesthesia'
]

# Generate and display maps one at a time
for title in titles:
    fig, ax = plt.subplots(figsize=(5, 5))
    sensation_map = np.array([[generate_sensation_data(i, j) for j in range(AVATAR_WIDTH)] for i in range(AVATAR_HEIGHT)])
    im = ax.imshow(sensation_map, cmap='plasma')
    ax.set_title(title)
    fig.colorbar(im, ax=ax)
    st.pyplot(fig)
    plt.close(fig)  # Close the figure to free up memory

st.write("The neuro-sensory maps illustrate the varying sensitivities across the AI's body. Brighter areas indicate heightened responsiveness to specific stimuli.")

# Add information about the AI's capabilities
st.subheader("NeuraSense AI: Advanced Sensory Capabilities")

capabilities = [
    "1. High-Precision Pressure Sensors",
    "2. Advanced Thermal Detectors",
    "3. Adaptive Texture Analysis",
    "4. Neural Network Integration",
    "5. Proprioception Simulation",
    "6. Synesthesia Emulation",
    "7. Tickle and Itch Simulation",
    "8. Adaptive Pain and Pleasure Modeling"
]

for capability in capabilities:
    st.write(capability)

# Interactive sensory exploration
st.subheader("Interactive Sensory Exploration")
exploration_type = st.selectbox("Choose a sensory exploration:",
                               ["Synesthesia Experience", "Proprioceptive Mapping"])

if exploration_type == "Synesthesia Experience":
    st.write("Experience how the AI might perceive colors as sounds or textures as tastes.")
    synesthesia_map = np.random.rand(AVATAR_HEIGHT, AVATAR_WIDTH, 3)
    st.image(Image.fromarray((synesthesia_map * 255).astype(np.uint8)), use_column_width=True)

elif exploration_type == "Proprioceptive Mapping":
    st.write("Explore the AI's sense of body position and movement.")
    proprioceptive_map = np.array([[np.linalg.norm([x - AVATAR_WIDTH/2, y - AVATAR_HEIGHT/2]) / (AVATAR_WIDTH/2)
                                    for x in range(AVATAR_WIDTH)] for y in range(AVATAR_HEIGHT)])
    
    buf = io.BytesIO()
    plt.figure(figsize=(5, 5))
    plt.imshow(proprioceptive_map, cmap='coolwarm')
    plt.savefig(buf, format='png')
    plt.close()  # Close the figure to free up memory
    
    proprioceptive_image = Image.open(buf)
    st.image(proprioceptive_image, use_column_width=True)

# Footer
st.write("---")
st.write("NeuraSense AI: Advanced Sensory Simulation v4.0")
st.write("Disclaimer: This is an advanced simulation and does not represent current technological capabilities.")