# This script performs the linear color transfer step that # leongatys/NeuralImageSynthesis' Scale Control code performs. # https://github.com/leongatys/NeuralImageSynthesis/blob/master/ExampleNotebooks/ScaleControl.ipynb # Standalone script by github.com/htoyryla, and github.com/ProGamerGov #based on this: https://github.com/ProGamerGov/Neural-Tools import numpy as np import argparse import imageio from skimage import io,transform,img_as_float from skimage.io import imread,imsave from PIL import Image from numpy import eye parser = argparse.ArgumentParser() parser.add_argument('-t', '--target_image', type=str, help="The image you are transfering color to. Ex: target.png", required=True) parser.add_argument('-s', '--source_image', type=str, help="The image you are transfering color from. Ex: source.png", required=True) parser.add_argument('-o', '--output_image', default='output.png', help="The name of your output image. Ex: output.png", type=str) parser.add_argument('-m', '--mode', default='pca', help="The color transfer mode. Options are pca, chol, or sym.", type=str) parser.add_argument('-e', '--eps', default='1e-5', help="Your epsilon value in scientific notation or normal notation. Ex: 1e-5 or 0.00001", type=float) parser.parse_args() args = parser.parse_args() Image.MAX_IMAGE_PIXELS = 1000000000 # Support gigapixel images def main(): target_img = imageio.v2.imread(args.target_image, pilmode="RGB").astype(float)/256 source_img = imageio.v2.imread(args.source_image, pilmode="RGB").astype(float)/256 output_img = match_color(target_img, source_img, mode=args.mode, eps=args.eps) output_img = (output_img * 255).astype(np.uint8) imsave(args.output_image, output_img) # imsave(args.output_image, output_img) def match_color(target_img, source_img, mode='pca', eps=1e-5): ''' Matches the colour distribution of the target image to that of the source image using a linear transform. Images are expected to be of form (w,h,c) and float in [0,1]. Modes are chol, pca or sym for different choices of basis. ''' mu_t = target_img.mean(0).mean(0) t = target_img - mu_t t = t.transpose(2,0,1).reshape(3,-1) Ct = t.dot(t.T) / t.shape[1] + eps * eye(t.shape[0]) mu_s = source_img.mean(0).mean(0) s = source_img - mu_s s = s.transpose(2,0,1).reshape(3,-1) Cs = s.dot(s.T) / s.shape[1] + eps * eye(s.shape[0]) if mode == 'chol': chol_t = np.linalg.cholesky(Ct) chol_s = np.linalg.cholesky(Cs) ts = chol_s.dot(np.linalg.inv(chol_t)).dot(t) if mode == 'pca': eva_t, eve_t = np.linalg.eigh(Ct) Qt = eve_t.dot(np.sqrt(np.diag(eva_t))).dot(eve_t.T) eva_s, eve_s = np.linalg.eigh(Cs) Qs = eve_s.dot(np.sqrt(np.diag(eva_s))).dot(eve_s.T) ts = Qs.dot(np.linalg.inv(Qt)).dot(t) if mode == 'sym': eva_t, eve_t = np.linalg.eigh(Ct) Qt = eve_t.dot(np.sqrt(np.diag(eva_t))).dot(eve_t.T) Qt_Cs_Qt = Qt.dot(Cs).dot(Qt) eva_QtCsQt, eve_QtCsQt = np.linalg.eigh(Qt_Cs_Qt) QtCsQt = eve_QtCsQt.dot(np.sqrt(np.diag(eva_QtCsQt))).dot(eve_QtCsQt.T) ts = np.linalg.inv(Qt).dot(QtCsQt).dot(np.linalg.inv(Qt)).dot(t) matched_img = ts.reshape(*target_img.transpose(2,0,1).shape).transpose(1,2,0) matched_img += mu_s matched_img[matched_img>1] = 1 matched_img[matched_img<0] = 0 return matched_img if __name__ == "__main__": main()