import cv2 import numpy as np from PIL import Image def reinhards_color_transfer(source, target): # Convert the images from the RGB to the Lab color space source_lab = cv2.cvtColor(source, cv2.COLOR_BGR2Lab).astype(np.float64) target_lab = cv2.cvtColor(target, cv2.COLOR_BGR2Lab).astype(np.float64) # Compute mean and standard deviation for each channel in both images l_mean_src, l_std_src = np.mean(source_lab[:, :, 0]), np.std(source_lab[:, :, 0]) a_mean_src, a_std_src = np.mean(source_lab[:, :, 1]), np.std(source_lab[:, :, 1]) b_mean_src, b_std_src = np.mean(source_lab[:, :, 2]), np.std(source_lab[:, :, 2]) l_mean_tar, l_std_tar = np.mean(target_lab[:, :, 0]), np.std(target_lab[:, :, 0]) a_mean_tar, a_std_tar = np.mean(target_lab[:, :, 1]), np.std(target_lab[:, :, 1]) b_mean_tar, b_std_tar = np.mean(target_lab[:, :, 2]), np.std(target_lab[:, :, 2]) # Subtract the means from the source image source_lab[:, :, 0] -= l_mean_src source_lab[:, :, 1] -= a_mean_src source_lab[:, :, 2] -= b_mean_src # Scale by the standard deviations source_lab[:, :, 0] = (l_std_tar / l_std_src) * source_lab[:, :, 0] source_lab[:, :, 1] = (a_std_tar / a_std_src) * source_lab[:, :, 1] source_lab[:, :, 2] = (b_std_tar / b_std_src) * source_lab[:, :, 2] # Add the target means source_lab[:, :, 0] += l_mean_tar source_lab[:, :, 1] += a_mean_tar source_lab[:, :, 2] += b_mean_tar # Clip pixel values to ensure they fall within the valid Lab range source_lab[:, :, 0] = np.clip(source_lab[:, :, 0], 0, 255) source_lab[:, :, 1] = np.clip(source_lab[:, :, 1], 0, 255) source_lab[:, :, 2] = np.clip(source_lab[:, :, 2], 0, 255) # Convert back to RGB transferred_rgb = cv2.cvtColor(source_lab.astype(np.uint8), cv2.COLOR_Lab2BGR) return transferred_rgb def rgb_to_hex(rgb): return '#{:02x}{:02x}{:02x}'.format(rgb[0], rgb[1], rgb[2]) def hex_to_rgb(hex): hex = hex.lstrip('#') return tuple(int(hex[i:i+2], 16) for i in (0, 2, 4)) def create_color_palette(colors, palette_width=800, palette_height=200): """ Receives a list of colors in hex format and creates a palette image """ pixels = [] n_colors = len(colors) for i in range(n_colors): color = hex_to_rgb(colors[i]) for j in range(palette_width//n_colors * palette_height): pixels.append(color) img = Image.new('RGB', (palette_height, palette_width)) img.putdata(pixels) # img.show() return img # if __name__ == "__main__": # source = cv2.imread("estampa.jpg") # colors = ['#6b3d68', '#6d2055', '#695977', '#6b7988', '#6f9b9b'] # # Generate palette image # palette_img = create_color_palette(colors) # # Convert the palette image to BGR format # palette_bgr = cv2.cvtColor(np.array(palette_img), cv2.COLOR_RGB2BGR) # # Save the palette image # # cv2.imwrite("palette.jpg", palette_bgr) # target = palette_bgr#cv2.imread("palette.jpg") # transferred = reinhards_color_transfer(source, target) # cv2.imwrite("transferred_reinhard.jpg", transferred) def recolor(source, colors): palette_img = create_color_palette(colors) palette_bgr = cv2.cvtColor(np.array(palette_img), cv2.COLOR_RGB2BGR) recolored = reinhards_color_transfer(source, palette_bgr) recoloredFile = cv2.imwrite("result.jpg", recolored) return recolored