# import all packages import requests import streamlit as st from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold # tokenizer from transformers import AutoTokenizer, DistilBertTokenizerFast # sequence tagging model + training-related from transformers import DistilBertForTokenClassification, Trainer, TrainingArguments import numpy as np import pandas as pd import torch import json import sys import os #from datasets import load_metric from sklearn.metrics import classification_report from pandas import read_csv from sklearn.linear_model import LogisticRegression import sklearn.model_selection from sklearn.feature_extraction.text import TfidfTransformer from sklearn.feature_extraction.text import CountVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline, FeatureUnion import math from sklearn.metrics import accuracy_score from sklearn.metrics import precision_recall_fscore_support from sklearn.model_selection import train_test_split import json import re import numpy as np import pandas as pd import re import nltk nltk.download("punkt") #stemmer = nltk.SnowballStemmer("english") #from nltk.corpus import stopwords import string from sklearn.model_selection import train_test_split # import seaborn as sns # from sklearn.metrics import confusion_matrix # from sklearn.metrics import classification_report, ConfusionMatrixDisplay from transformers import AutoTokenizer, Trainer, TrainingArguments, AutoModelForSequenceClassification, AutoConfig import torch from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler import itertools import json import glob from transformers import TextClassificationPipeline, TFAutoModelForSequenceClassification, AutoTokenizer from transformers import pipeline import pickle import urllib.request from sklearn.feature_extraction.text import TfidfTransformer from sklearn.feature_extraction.text import CountVectorizer #from PyPDF2 import PdfReader #from urllib.request import urlopen #from tabulate import tabulate import csv #import gdown import pdfplumber import pathlib import shutil import webbrowser from streamlit.components.v1 import html import streamlit.components.v1 as components from PyPDF2 import PdfReader from huggingface_hub import HfApi import io from huggingface_hub import Repository from git import repo api = HfApi() #device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # from git import Repo # Repo.clone_from('https://github.com/gseetha04/IMA-weights.git', branch='master') def main(): st.title("Text to Causal Knowledge Graph") st.sidebar.title("Please upload your text documents in one file here:") k=2 seed = 1 k1= 5 text_list = [] causal_sents = [] try: uploaded_file = st.sidebar.file_uploader("Choose a file", type = "pdf") #st.stop() except: #if uploaded_file st.write("Upload a pdf file...") st.stop() if uploaded_file is not None: reader = PdfReader(uploaded_file) for page in reader.pages: text = page.extract_text() text_list.append(text) text_list_final = [x.replace('\n', '') for x in text_list] text_list_final = re.sub('"', '', str(text_list_final)) sentences = nltk.sent_tokenize(text_list_final) result =[] for i in sentences: result1 = i.lower() result2 = re.sub(r'[^\w\s]','',result1) result.append(result2) tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") #bert-base-uncased model_path = "checkpoint-2850" model = AutoModelForSequenceClassification.from_pretrained(model_path,id2label={0:'non-causal',1:'causal'}) pipe1 = pipeline("text-classification", model=model,tokenizer=tokenizer) for sent in result: pred = pipe1(sent) for lab in pred: if lab['label'] == 'causal': #causal causal_sents.append(sent) model_name = "distilbert-base-cased" tokenizer = DistilBertTokenizerFast.from_pretrained(model_name) model_path1 = "DistilBertforTokenclassification" model = DistilBertForTokenClassification.from_pretrained(model_path1) #len(unique_tags),, num_labels= 7, , id2label={0:'CT',1:'E',2:'C',3:'O'} pipe = pipeline('ner', model=model, tokenizer=tokenizer,aggregation_strategy='simple') #grouped_entities=True sentence_pred = [] class_list = [] entity_list = [] for k in causal_sents: pred= pipe(k) #st.write(pred) for i in pred: sentence_pred.append(k) class_list.append(i['word']) entity_list.append(i['entity_group']) filename = 'Checkpoint-classification.sav' count_vect = CountVectorizer(ngram_range=[1,3]) tfidf_transformer=TfidfTransformer() loaded_model = pickle.load(open(filename, 'rb')) loaded_vectorizer = pickle.load(open('vectorizefile_classification.pickle', 'rb')) pipeline_test_output = loaded_vectorizer.transform(class_list) predicted = loaded_model.predict(pipeline_test_output) pred1 = predicted level0 = [] count =0 for i in predicted: if i == 3: level0.append('Non-Performance') count +=1 else: level0.append('Performance') count +=1 list_pred = {0: 'Customers',1:'Employees',2:'Investors',3:'Non-performance',4:'Society',5:'Unclassified'} pred_val = [list_pred[i] for i in pred1] #print('count',count) sent_id, unique = pd.factorize(sentence_pred) final_list = pd.DataFrame( {'Id': sent_id, 'Full_sentence': sentence_pred, 'Component': class_list, 'CauseOrEffect': entity_list, 'Label_level1': level0, 'Label_level2': pred_val }) s = final_list['Component'].shift(-1) m = s.str.startswith('##', na=False) final_list.loc[m, 'Component'] += (' ' + s[m]) final_list1 = final_list[~final_list['Component'].astype(str).str.startswith('##')] li = [] uni = final_list1['Id'].unique() for i in uni: df_new = final_list1[final_list1['Id'] == i] uni1 = df_new['Id'].unique() if 'E' not in df_new.values: li.append(uni1) out = np.concatenate(li).ravel() li_pan = pd.DataFrame(out,columns=['Id']) df3 = pd.merge(final_list1, li_pan[['Id']], on='Id', how='left', indicator=True) \ .query("_merge == 'left_only'") \ .drop("_merge",axis=1) #df = df3.groupby(['Id','Full_sentence','CauseOrEffect', 'Label_level1', 'Label_level2'])['Component'].apply(', '.join).reset_index() #st.write(df) #df = df3 df3["CauseOrEffect"].replace({"C": "cause", "E": "effect"}, inplace=True) df_final = df3[df3['CauseOrEffect'] != 'CT'] df3['New string'] = df_final['Component'].replace(r'[##]+', ' ', regex=True) df_final = df_final.drop("Component",axis=1) df_final.insert(2, "Component", df3['New string'], True) df_final1 = df_final[df_final['Component'].str.split().str.len().gt(1)] #st.write(df_final[df_final['Component'].str.len() != 1]) df_final1.to_csv('predictions.csv') # buffer = io.BytesIO() # with pd.ExcelWriter(buffer, engine="xlsxwriter") as writer: # df_final.to_excel(writer, sheet_name="Sheet1", index=False) # writer.close() count_NP_NP = 0 count_NP_investor = 0 count_NP_customer = 0 count_NP_employees = 0 count_NP_society = 0 count_inv_np = 0 count_inv_investor = 0 count_inv_customer = 0 count_inv_employee = 0 count_inv_society = 0 count_cus_np = 0 count_cus_investor = 0 count_cus_customer = 0 count_cus_employee = 0 count_cus_society = 0 count_emp_np = 0 count_emp_investor = 0 count_emp_customer = 0 count_emp_employee = 0 count_emp_society = 0 count_soc_np = 0 count_soc_investor = 0 count_soc_customer = 0 count_soc_employee = 0 count_soc_society = 0 for i in range(0,df_final['Id'].max()): j = df_final.loc[df_final['Id'] == i] cause_tab = j.loc[j['CauseOrEffect'] == 'cause'] effect_tab = j.loc[j['CauseOrEffect'] == 'effect'] cause_coun_NP = (cause_tab.Label_level2 == 'Non-performance').sum() effect_coun_NP = (effect_tab.Label_level2 == 'Non-performance').sum() if (cause_coun_NP > 0) and (effect_coun_NP > 0): count_NP = cause_coun_NP if cause_coun_NP >= effect_coun_NP else effect_coun_NP else: count_NP = 0 effect_NP_inv = (effect_tab.Label_level2 == 'Investors').sum() if (cause_coun_NP > 0) and (effect_NP_inv > 0): count_NP_inv = cause_coun_NP if cause_coun_NP >= effect_NP_inv else effect_NP_inv else: count_NP_inv = 0 effect_NP_cus = (effect_tab.Label_level2 == 'Customers').sum() if (cause_coun_NP > 0) and (effect_NP_cus > 0): count_NP_cus = cause_coun_NP if cause_coun_NP >= effect_NP_cus else effect_NP_cus else: count_NP_cus = 0 effect_NP_emp = (effect_tab.Label_level2 == 'Employees').sum() if (cause_coun_NP > 0) and (effect_NP_emp > 0): count_NP_emp = cause_coun_NP if cause_coun_NP >= effect_NP_emp else effect_NP_emp else: count_NP_emp = 0 effect_NP_soc = (effect_tab.Label_level2 == 'Society').sum() if (cause_coun_NP > 0) and (effect_NP_soc > 0): count_NP_soc = cause_coun_NP if cause_coun_NP >= effect_NP_soc else effect_NP_soc else: count_NP_soc = 0 cause_coun_inv = (cause_tab.Label_level2 == 'Investors').sum() effect_coun_inv = (effect_tab.Label_level2 == 'Non-performance').sum() if (cause_coun_inv > 0) and (effect_coun_inv > 0): count_NP_inv = cause_coun_inv if cause_coun_inv >= effect_coun_inv else effect_coun_inv else: count_NP_inv = 0 effect_inv_inv = (effect_tab.Label_level2 == 'Investors').sum() if (cause_coun_inv > 0) and (effect_inv_inv > 0): count_inv_inv = cause_coun_inv if cause_coun_inv >= effect_inv_inv else effect_inv_inv else: count_inv_inv = 0 effect_inv_cus = (effect_tab.Label_level2 == 'Customers').sum() if (cause_coun_inv > 0) and (effect_inv_cus > 0): count_inv_cus = cause_coun_inv if cause_coun_inv >= effect_inv_cus else effect_inv_cus else: count_inv_cus = 0 effect_inv_emp = (effect_tab.Label_level2 == 'Employees').sum() if (cause_coun_inv > 0) and (effect_inv_emp > 0): count_inv_emp = cause_coun_inv if cause_coun_inv >= effect_inv_emp else effect_inv_emp else: count_inv_emp = 0 effect_inv_soc = (effect_tab.Label_level2 == 'Society').sum() if (cause_coun_inv > 0) and (effect_inv_soc > 0): count_inv_soc = cause_coun_inv if cause_coun_inv >= effect_inv_soc else effect_inv_soc else: count_inv_soc = 0 cause_coun_cus = (cause_tab.Label_level2 == 'Customers').sum() effect_coun_cus = (effect_tab.Label_level2 == 'Non-performance').sum() if (cause_coun_cus > 0) and (effect_coun_cus > 0): count_NP_cus = cause_coun_cus if cause_coun_cus >= effect_coun_cus else effect_coun_cus else: count_NP_cus = 0 effect_cus_inv = (effect_tab.Label_level2 == 'Investors').sum() if (cause_coun_cus > 0) and (effect_cus_inv > 0): count_cus_inv = cause_coun_cus if cause_coun_cus >= effect_cus_inv else effect_cus_inv else: count_cus_inv = 0 effect_cus_cus = (effect_tab.Label_level2 == 'Customers').sum() if (cause_coun_cus > 0) and (effect_cus_cus > 0): count_cus_cus = cause_coun_cus if cause_coun_cus >= effect_cus_cus else effect_cus_cus else: count_cus_cus = 0 effect_cus_emp = (effect_tab.Label_level2 == 'Employees').sum() if (cause_coun_cus > 0) and (effect_cus_emp > 0): count_cus_emp = cause_coun_cus if cause_coun_cus >= effect_cus_emp else effect_cus_emp else: count_cus_emp = 0 effect_cus_soc = (effect_tab.Label_level2 == 'Society').sum() if (cause_coun_cus > 0) and (effect_cus_soc > 0): count_cus_soc = cause_coun_cus if cause_coun_cus >= effect_cus_soc else effect_cus_soc else: count_cus_soc = 0 cause_coun_emp = (cause_tab.Label_level2 == 'Employees').sum() effect_coun_emp = (effect_tab.Label_level2 == 'Non-performance').sum() if (cause_coun_emp > 0) and (effect_coun_emp > 0): count_NP_emp = cause_coun_emp if cause_coun_emp >= effect_coun_emp else effect_coun_emp else: count_NP_emp = 0 effect_emp_inv = (effect_tab.Label_level2 == 'Investors').sum() if (cause_coun_emp > 0) and (effect_emp_inv > 0): count_emp_inv = cause_coun_emp if cause_coun_emp >= effect_emp_inv else effect_emp_inv else: count_emp_inv = 0 effect_emp_cus = (effect_tab.Label_level2 == 'Customers').sum() if (cause_coun_emp > 0) and (effect_emp_cus > 0): count_emp_cus = cause_coun_emp if cause_coun_emp >= effect_emp_cus else effect_emp_cus else: count_emp_cus = 0 effect_emp_emp = (effect_tab.Label_level2 == 'Employees').sum() if (cause_coun_emp > 0) and (effect_emp_emp > 0): count_emp_emp = cause_coun_emp if cause_coun_emp >= effect_emp_emp else effect_emp_emp else: count_emp_emp = 0 effect_emp_soc = (effect_tab.Label_level2 == 'Society').sum() if (cause_coun_emp > 0) and (effect_emp_soc > 0): count_emp_soc = cause_coun_emp if cause_coun_emp >= effect_emp_soc else effect_emp_soc else: count_emp_soc = 0 cause_coun_soc = (cause_tab.Label_level2 == 'Society').sum() effect_coun_soc = (effect_tab.Label_level2 == 'Non-performance').sum() if (cause_coun_soc > 0) and (effect_coun_soc > 0): count_NP_soc = cause_coun_soc if cause_coun_soc >= effect_coun_soc else effect_coun_soc else: count_NP_soc = 0 effect_soc_inv = (effect_tab.Label_level2 == 'Investors').sum() if (cause_coun_soc > 0) and (effect_soc_inv > 0): count_soc_inv = cause_coun_soc if cause_coun_soc >= effect_soc_inv else effect_soc_inv else: count_soc_inv = 0 effect_soc_cus = (effect_tab.Label_level2 == 'Customers').sum() if (cause_coun_soc > 0) and (effect_soc_cus > 0): count_soc_cus = cause_coun_soc if cause_coun_soc >= effect_soc_cus else effect_soc_cus else: count_soc_cus = 0 effect_soc_emp = (effect_tab.Label_level2 == 'Employees').sum() if (cause_coun_soc > 0) and (effect_soc_emp > 0): count_soc_emp = cause_coun_soc if cause_coun_soc >= effect_soc_emp else effect_soc_emp else: count_soc_emp = 0 effect_soc_soc = (effect_tab.Label_level2 == 'Society').sum() if (cause_coun_soc > 0) and (effect_soc_soc > 0): count_soc_soc = cause_coun_soc if cause_coun_soc >= effect_soc_soc else effect_soc_soc else: count_soc_soc = 0 count_NP_NP = count_NP_NP + count_NP count_NP_investor = count_NP_investor + count_NP_inv count_NP_customer = count_NP_customer + count_NP_cus count_NP_employees = count_NP_employees + count_NP_emp count_NP_society = count_NP_society + count_NP_soc count_inv_np = count_inv_np + count_NP_inv count_inv_investor = count_inv_investor + count_inv_inv count_inv_customer = count_inv_customer + count_inv_cus count_inv_employee = count_inv_employee + count_inv_emp count_inv_society = count_inv_society + count_inv_soc count_cus_np = count_cus_np + count_NP_cus count_cus_investor = count_cus_investor + count_cus_inv count_cus_customer = count_cus_customer + count_cus_cus count_cus_employee = count_cus_employee + count_cus_emp count_cus_society = count_cus_society + count_cus_soc count_emp_np = count_emp_np + count_NP_emp count_emp_investor = count_emp_investor + count_emp_inv count_emp_customer = count_emp_customer + count_emp_cus count_emp_employee = count_emp_employee + count_emp_emp count_emp_society = count_emp_society + count_emp_soc count_soc_np = count_soc_np + count_NP_soc count_soc_investor = count_soc_investor + count_soc_inv count_soc_customer = count_soc_customer + count_soc_cus count_soc_employee = count_soc_employee + count_soc_emp count_soc_society = count_soc_society + count_soc_soc df_tab = pd.DataFrame(columns = ['Non-performance', 'Investors', 'Customers', 'Employees', 'Society'],index=['Non-performance', 'Investors', 'Customers', 'Employees', 'Society'], dtype=object) df_tab.loc['Non-performance'] = [count_NP_NP, count_NP_investor, count_NP_customer, count_NP_employees, count_NP_society] df_tab.loc['Investors'] = [count_inv_np, count_inv_investor, count_inv_customer, count_inv_employee, count_inv_society] df_tab.loc['Customers'] = [count_cus_np, count_cus_investor, count_cus_customer, count_cus_employee, count_cus_society] df_tab.loc['Employees'] = [count_emp_np, count_emp_investor, count_emp_customer, count_emp_employee, count_emp_society] df_tab.loc['Society'] = [count_soc_np, count_soc_investor, count_soc_customer, count_soc_employee, count_soc_society] # df_tab = pd.DataFrame({ # 'Non-performance': [count_NP_NP, count_NP_investor, count_NP_customer, count_NP_employees, count_NP_society], # 'Investors': [count_inv_np, count_inv_investor, count_inv_customer, count_inv_employee, count_inv_society], # 'Customers': [count_cus_np, count_cus_investor, count_cus_customer, count_cus_employee, count_cus_society], # 'Employees': [count_emp_np, count_emp_investor, count_emp_customer, count_emp_employee, count_emp_society], # 'Society': [count_soc_np, count_soc_investor, count_soc_customer, count_soc_employee, count_soc_society]}, # index=['Non-performance', 'Investors', 'Customers', 'Employees', 'Society']) df_tab.to_csv('final_data.csv') buffer = io.BytesIO() with pd.ExcelWriter(buffer, engine="xlsxwriter") as writer: df_tab.to_excel(writer,sheet_name="count_result",index=False) df_final1.to_excel(writer,sheet_name="Detailed_results",index=False) writer.close() df = pd.read_csv('final_data.csv', index_col=0) # Convert to JSON format json_data = [] for row in df.index: for col in df.columns: json_data.append({ 'source': row, 'target': col, 'value': int(df.loc[row, col]) }) # Write JSON to file with open('ch.json', 'w') as f: json.dump(json_data, f) # repo.git_pull() # repo.git_add("ch.json") # repo.git_commit(commit_message="add ch.json :)") # repo.push() csv_file = "predictions.csv" json_file = "smalljson.json" # Open the CSV file and read the data with open(csv_file, "r") as f: csv_data = csv.DictReader(f) # Convert the CSV data to a list of dictionaries data_list = [] for row in csv_data: data_list.append(dict(row)) # Convert the list of dictionaries to JSON json_data = json.dumps(data_list) # Write the JSON data to a file with open(json_file, "w") as f: f.write(json_data) api.upload_file( path_or_fileobj=f, path_in_repo="ch.json", repo_id="Seetha/IMA-pipeline-streamlit", repo_type="dataset", token="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", ) def convert_df(df): #IMPORTANT: Cache the conversion to prevent computation on every rerun return df.to_csv().encode('utf-8') csv1 = convert_df(df_final1.astype(str)) csv2 = convert_df(df_tab.astype(str)) with st.container(): st.download_button(label="Download the detailed result table_csv",data=csv1,file_name='results.csv',mime='text/csv') st.download_button(label="Download the result table_csv",data=csv2,file_name='final_data.csv',mime='text/csv') #st.download_button(label="Download the detailed result table",data=buffer,file_name="df_final.xlsx",mime="application/vnd.ms-excel") st.download_button(label="Download the result table",data=buffer,file_name="df_tab.xlsx",mime="application/vnd.ms-excel") # repo_dir = 'IMA-pipeline-streamlit' # repo = Repo(repo_dir) # file_list = [ # '/app/ima-pipeline-streamlit/results.csv', # '/app/ima-pipeline-streamlit/final_data.csv' # ] # commit_message = 'Add the generated files to Github' # repo.index.add(file_list) # repo.index.commit(commit_message) # origin = repo.remote('origin') # origin.push() # # LINK TO THE CSS FILE # def tree_css(file_name): # with open('tree.css')as f: # st.markdown(f"", unsafe_allow_html = True) # def div_css(file_name): # with open('div.css')as f: # st.markdown(f"", unsafe_allow_html = True) # def side_css(file_name): # with open('side.css')as f: # st.markdown(f"", unsafe_allow_html = True) # tree_css('tree.css') # div_css('div.css') # side_css('side.css') # STREAMLIT_STATIC_PATH = pathlib.Path(st.__path__[0]) / 'static' # CSS_PATH = (STREAMLIT_STATIC_PATH / "assets/css") # if not CSS_PATH.is_dir(): # CSS_PATH.mkdir() # css_file = CSS_PATH / "tree.css" # css_file1 = CSS_PATH / "div.css" # css_file2 = CSS_PATH / "side.css" # if not css_file.exists(): # shutil.copy("assets/css/tree.css", css_file) # shutil.copy("assets/css/div.css", css_file1) # shutil.copy("assets/css/side.css", css_file2) HtmlFile = open("index.html", 'r', encoding='utf-8') source_code = HtmlFile.read() #print(source_code) components.html(source_code) # # Define your javascript # my_js = """ # alert("Hello World"); # """ # Wrapt the javascript as html code #my_html = f"" # with st.container(): # # Execute your app # st.title("Visualization example") # # components.html(source_code) # #html(my_html) # #webbrowser.open('https://webpages.charlotte.edu/ltotapal/') # # embed streamlit docs in a streamlit app # #components.iframe("https://webpages.charlotte.edu/ltotapal/") # st.markdown('Text to Knowledge graph link', unsafe_allow_html=True) if __name__ == '__main__': main()